1
|
Seth R, Singh A. Rational design of co-ordination compounds in combination of bipyridine type of ligands and group 7 metal (M = Mn, Re) for photoCORM: a DFT study. J Mol Model 2023; 29:306. [PMID: 37676553 DOI: 10.1007/s00894-023-05712-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
CONTEXT A large number of manganese and rhenium tricarbonyl complexes are known in literature along with various applications in different fields. CO-releasing molecules (CORMs) got recent research attention because CO can act as a prodrug for different diseases. CORMs offer the promising prospect of a safe and controllable amount of CO release. In this research work, we have explored the electronic properties of compounds such as bipyridine-related [Mn(CO)3] and [Re(CO)3] and we have compared the electronic properties of both manganese and rhenium tricarbonyl complexes in the light of carbon monoxide releasing tendency. The chosen Mn and Re metals have enough possibility to vary or play with ligands and design a new and novel CORM molecule. In this context, we have taken a range of 4,4'-disubstituted 2,2' bipyridyl ligands (Rbpy, where R = NH2, tBu, OCH3, H, CF3, CN, NO2) to investigate CO's liberation ability to identify and study such molecules. The calculated absorbance of designed complexes (1-14) shows visible/near-IR region (350-850 nm). The HOMO-LUMO energy gap of 7 (ΔE=2.40 eV) complex and for complex 14 (ΔE=2.28 eV) which is lesser in all complexes but the MLCT percentage is greater in Mn tricarbonyl complexes in comparison to Re tricarbonyl complexes. The calculated results of the FMO approach revealed that complex 7 and 14 have the lowest energy gap which is also in good agreement with DOSs and TDM results. The theoretically calculated results revealed that the both Mn and Re tricarbonyl complexes have a tendency for labialization of CO, but Mn tricarbonyl complexes are more prone to CO release because they have higher MLCT percentage. METHODS In this research work, we have performed density functional theory (DFT) calculations to explore the physical properties of compounds such as bipyridine-related [Mn(CO)3] and [Re(CO)3] and we have compared the physical properties of both manganese and rhenium tricarbonyl complexes in the light of carbon monoxide releasing tendency. DFT-based calculations were performed by using B3LYP/LANL2DZ basis set followed by acetonitrile solvent using the conductor-like polarizable continuum model (CPCM) for different calculations. Various geometrical calculations were performed using the Gaussian16 suite of programs and the output results obtained from Gaussian16 were visualized using GaussView 5.0.16. The same level of theory was used for various calculations, including frontier molecular orbital (FMO) analysis, metal to ligand charge transfer (MLCT), density of state (DOS) calculations, and transition density of matrix (TDM) calculations. For specific calculations, GaussSum 2.2 software package was used to calculate the density of states, and the Multiwfn 3.8 program was used to analyze the transition density matrix, which is presented using heat maps for both electrons and holes.
Collapse
Affiliation(s)
- Ritu Seth
- Department of Chemistry, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research, V. B. S. Purvanchal University Jaunpur, UP, Jaunpur, 222003, India
| | - Ajeet Singh
- Department of Chemistry, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research, V. B. S. Purvanchal University Jaunpur, UP, Jaunpur, 222003, India.
| |
Collapse
|
2
|
Benniston AC, Zeng L. Recent Advances in Photorelease Complexes for Therapeutic Applications”. Dalton Trans 2022; 51:4202-4212. [DOI: 10.1039/d2dt00254j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photorelease complexes represent a class of agents for which UV-visible light triggers the expulsion of a specfic molecule that is intrinsically part of the inner coordination sphere or held in...
Collapse
|
3
|
Malekmohammadi S, Sedghi Aminabad N, Sabzi A, Zarebkohan A, Razavi M, Vosough M, Bodaghi M, Maleki H. Smart and Biomimetic 3D and 4D Printed Composite Hydrogels: Opportunities for Different Biomedical Applications. Biomedicines 2021; 9:1537. [PMID: 34829766 PMCID: PMC8615087 DOI: 10.3390/biomedicines9111537] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/10/2021] [Accepted: 10/16/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, smart/stimuli-responsive hydrogels have drawn tremendous attention for their varied applications, mainly in the biomedical field. These hydrogels are derived from different natural and synthetic polymers but are also composite with various organic and nano-organic fillers. The basic functions of smart hydrogels rely on their ability to change behavior; functions include mechanical, swelling, shaping, hydrophilicity, and bioactivity in response to external stimuli such as temperature, pH, magnetic field, electromagnetic radiation, and biological molecules. Depending on the final applications, smart hydrogels can be processed in different geometries and modalities to meet the complicated situations in biological media, namely, injectable hydrogels (following the sol-gel transition), colloidal nano and microgels, and three dimensional (3D) printed gel constructs. In recent decades smart hydrogels have opened a new horizon for scientists to fabricate biomimetic customized biomaterials for tissue engineering, cancer therapy, wound dressing, soft robotic actuators, and controlled release of bioactive substances/drugs. Remarkably, 4D bioprinting, a newly emerged technology/concept, aims to rationally design 3D patterned biological matrices from synthesized hydrogel-based inks with the ability to change structure under stimuli. This technology has enlarged the applicability of engineered smart hydrogels and hydrogel composites in biomedical fields. This paper aims to review stimuli-responsive hydrogels according to the kinds of external changes and t recent applications in biomedical and 4D bioprinting.
Collapse
Affiliation(s)
- Samira Malekmohammadi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
- Department of Regenerative Medicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran;
| | - Negar Sedghi Aminabad
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran; (N.S.A.); (A.S.)
| | - Amin Sabzi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran; (N.S.A.); (A.S.)
| | - Amir Zarebkohan
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran;
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran; (N.S.A.); (A.S.)
| | - Mehdi Razavi
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| | - Massoud Vosough
- Department of Regenerative Medicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Hajar Maleki
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, 50939 Cologne, Germany
| |
Collapse
|
4
|
Fu J, Wu Q, Dang Y, Lei X, Feng G, Chen M, Yu XY. Synergistic Therapy Using Doxorubicin-Loading and Nitric Oxide-Generating Hollow Prussian Blue Nanoparticles with Photoacoustic Imaging Potential Against Breast Cancer. Int J Nanomedicine 2021; 16:6003-6016. [PMID: 34511902 PMCID: PMC8418369 DOI: 10.2147/ijn.s327598] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Traditional antitumor chemotherapy faces great challenges, such as multi-drug resistance (MDR) and poor penetration into tumor tissues. The newly emerging nitric oxide (NO)-based gas therapy has been recognized to reduce MDR and has improved permeation into tumor tissue. Methods In this study, NO-generating prodrug sodium nitroprusside (SNP) was doped to hollow mesoporous Prussian blue (PB) nanoparticles to fabricate NO-generating nanoparticles (NO-PB), which was further loaded with doxorubicin (DOX). Results DOX loaded NO-PB (DOX-NO-PB) was released quicker at pH 6 compared with neutral pH, suggesting NO-PB may facilitate the release of loaded drug in acidic tumor tissue. The capacity of NO production by NO-PB was measured, and the results showed the presence of NO in the culture medium from 4T1 cells incubated with NO-PB and inside the cells. NP-PB could be detected by photoacoustic imaging (PAI) in tumor tissue in 4T1 tumor bearing mice, suggesting this nanoparticle may serve as contrast agent for the noninvasive diagnosis of tumor tissues. NO-PB suppressed the growth of tissues in 4T1 tumor bearing mice. DOX-NO-PB showed more potent anti-tumor effects in 4T1 cells and tumor bearing mice compared with free DOX and NO-PB alone, indicating that the combination of DOX and NO-PB exhibited synergistic effects on tumor suppression. Conclusion This study provides a novel nanocarrier for gas therapy with additional PAI imaging capacity. This nanocarrier can be utilized for combination therapy of NO and chemotherapeutics which may serve as theranostic agents.
Collapse
Affiliation(s)
- Jijun Fu
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Qianni Wu
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yuanye Dang
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Xueping Lei
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Guining Feng
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Mingyue Chen
- Foshan Nanhai Vocational School of Health, Foshan, 528211, People's Republic of China
| | - Xi-Yong Yu
- The Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital of Guangzhou Medical University, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| |
Collapse
|
5
|
Silva AF, Calhau IB, Gomes AC, Valente AA, Gonçalves IS, Pillinger M. A hafnium-based metal-organic framework for the entrapment of molybdenum hexacarbonyl and the light-responsive release of the gasotransmitter carbon monoxide. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112053. [PMID: 33947547 DOI: 10.1016/j.msec.2021.112053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022]
Abstract
A carbon monoxide-releasing material (CORMA) has been prepared by inclusion of molybdenum hexacarbonyl in a hafnium-based metal-organic framework (MOF) with the UiO-66 architecture. Mo(CO)6 was adsorbed from solution to give supported materials containing 6.0-6.6 wt% Mo. As confirmed by powder X-ray diffraction (PXRD) and SEM coupled with energy dispersive X-ray spectroscopy, neither the crystallinity nor the morphology of the porous host was affected by the loading process. While the general shape of the N2 physisorption isotherms (77 K) did not change significantly after encapsulation of Mo(CO)6, the micropore volume decreased by ca. 20%. Thermogravimetric analysis of the as-prepared materials revealed a weight loss step around 160 °C associated with the decomposition of Mo(CO)6 to subcarbonyl species. Confirmation for the presence of encapsulated Mo(CO)6 complexes was provided by FT-IR and 13C{1H} cross-polarization magic-angle spinning NMR spectroscopies. To test the capability of these materials to behave as CORMAs and transfer CO to heme proteins, the standard myoglobin (Mb) assay was used. While stable in the dark, photoactivation with low-power UV light (365 nm) liberated CO from the encapsulated hexacarbonyl molecules in Mo(6.0)/UiO-66(Hf), leading to a maximum amount of 0.26 mmol CO released per gram of material. Under the simulated physiological conditions of the Mb assay (37 °C, pH 7.4 buffer), minimal leaching of molybdenum occurred, PXRD showed only slight amorphization, and FT-IR spectroscopy confirmed the high chemical stability of the MOF host.
Collapse
Affiliation(s)
- Andreia F Silva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel B Calhau
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana C Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Anabela A Valente
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel S Gonçalves
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Martyn Pillinger
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Henke WC, Kerr TA, Sheridan TR, Henling LM, Takase MK, Day VW, Gray HB, Blakemore JD. Synthesis, structural studies, and redox chemistry of bimetallic [Mn(CO) 3] and [Re(CO) 3] complexes. Dalton Trans 2021; 50:2746-2756. [PMID: 33459317 PMCID: PMC7983307 DOI: 10.1039/d0dt03666h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manganese ([Mn(CO)3]) and rhenium tricarbonyl ([Re(CO)3]) complexes represent a workhorse family of compounds with applications in a variety of fields. Here, the coordination, structural, and electrochemical properties of a family of mono- and bimetallic [Mn(CO)3] and [Re(CO)3] complexes are explored. In particular, a novel heterobimetallic complex featuring both [Mn(CO)3] and [Re(CO)3] units supported by 2,2'-bipyrimidine (bpm) has been synthesized, structurally characterized, and compared to the analogous monomeric and homobimetallic complexes. To enable a comprehensive structural analysis for the series of complexes, we have carried out new single crystal X-ray diffraction studies of seven compounds: Re(CO)3Cl(bpm), anti-[{Re(CO3)Cl}2(bpm)], Mn(CO)3Br(bpz) (bpz = 2,2'-bipyrazine), Mn(CO)3Br(bpm), syn- and anti-[{Mn(CO3)Br}2(bpm)], and syn-[Mn(CO3)Br(bpm)Re(CO)3Br]. Electrochemical studies reveal that the bimetallic complexes are reduced at much more positive potentials (ΔE≥ 380 mV) compared to their monometallic analogues. This redox behavior is consistent with introduction of the second tricarbonyl unit which inductively withdraws electron density from the bridging, redox-active bpm ligand, resulting in more positive reduction potentials. [Re(CO3)Cl]2(bpm) was reduced with cobaltocene; the electron paramagnetic resonance spectrum of the product exhibits an isotropic signal (near g = 2) characteristic of a ligand-centered bpm radical. Our findings highlight the facile synthesis as well as the structural characteristics and unique electrochemical behavior of this family of complexes.
Collapse
Affiliation(s)
- Wade C Henke
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Adeleke AA, Zamisa SJ, Islam MS, Olofinsan K, Salau VF, Mocktar C, Omondi B. Quinoline Functionalized Schiff Base Silver (I) Complexes: Interactions with Biomolecules and In Vitro Cytotoxicity, Antioxidant and Antimicrobial Activities. Molecules 2021; 26:molecules26051205. [PMID: 33668169 PMCID: PMC7956476 DOI: 10.3390/molecules26051205] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
A series of fifteen silver (I) quinoline complexes Q1-Q15 have been synthesized and studied for their biological activities. Q1-Q15 were synthesized from the reactions of quinolinyl Schiff base derivatives L1-L5 (obtained by condensing 2-quinolinecarboxaldehyde with various aniline derivatives) with AgNO3, AgClO4 and AgCF3SO3. Q1-Q15 were characterized by various spectroscopic techniques and the structures of [Ag(L1)2]NO3Q1, [Ag(L1)2]ClO4Q6, [Ag(L2)2]ClO4Q7, [Ag(L2)2]CF3SO3Q12 and [Ag(L4)2]CF3SO3Q14 were unequivocally determined by single crystal X-ray diffraction analysis. In vitro antimicrobial tests against Gram-positive and Gram-negative bacteria revealed the influence of structure and anion on the complexes' moderate to excellent antibacterial activity. In vitro antioxidant activities of the complexes showed their good radical scavenging activity in ferric reducing antioxidant power (FRAP). Complexes with the fluorine substituent or the thiophene or benzothiazole moieties are more potent with IC50 between 0.95 and 2.22 mg/mL than the standard used, ascorbic acid (2.68 mg/mL). The compounds showed a strong binding affinity with calf thymus-DNA via an intercalation mode and protein through a static quenching mechanism. Cytotoxicity activity was examined against three carcinoma cell lines (HELA, MDA-MB231, and SHSY5Y). [Ag(L2)2]ClO4Q7 with a benzothiazole moiety and [Ag(L4)2]ClO4Q9 with a methyl substituent had excellent cytotoxicity against HELA cells.
Collapse
Affiliation(s)
- Adesola A. Adeleke
- School of Chemistry and Physics, Pietermaritzburg Campus, University of Kwazulu-Natal, Private Bag X01, Scottsville 3209, South Africa;
- Department of Chemical Sciences, Olabisi Onabanjo University, P. M. B. 2002, Ago-Iwoye 120107, Nigeria
| | - Sizwe J. Zamisa
- School of Chemistry and Physics, Westville Campus, University of Kwazulu-Natal, Private Bag X54001, Westville 4001, South Africa;
| | - Md. Shahidul Islam
- Discipline of Biochemistry, School of Life Sciences, Westville Campus, University of Kwazulu-Natal, Private Bag X54001, Durban 4000, South Africa; (M.S.I.); (K.O.); (V.F.S.)
| | - Kolawole Olofinsan
- Discipline of Biochemistry, School of Life Sciences, Westville Campus, University of Kwazulu-Natal, Private Bag X54001, Durban 4000, South Africa; (M.S.I.); (K.O.); (V.F.S.)
| | - Veronica F. Salau
- Discipline of Biochemistry, School of Life Sciences, Westville Campus, University of Kwazulu-Natal, Private Bag X54001, Durban 4000, South Africa; (M.S.I.); (K.O.); (V.F.S.)
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, School of Health Sciences, Westville Campus, University of Kwazulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| | - Bernard Omondi
- School of Chemistry and Physics, Pietermaritzburg Campus, University of Kwazulu-Natal, Private Bag X01, Scottsville 3209, South Africa;
- Correspondence:
| |
Collapse
|
8
|
Wei T, Jiang L, Chen Y, Chen X. Recent Progress of Photocage Molecules and Materials. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20080361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Wang M, Yang X, Pan Z, Wang Y, De La Cruz LK, Wang B, Tan C. Towards "CO in a pill": Pharmacokinetic studies of carbon monoxide prodrugs in mice. J Control Release 2020; 327:174-185. [PMID: 32745568 PMCID: PMC7606817 DOI: 10.1016/j.jconrel.2020.07.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/27/2022]
Abstract
Carbon monoxide (CO) is a known endogenous signaling molecule with potential therapeutic indications in treating inflammation, cancer, neuroprotection, and sickle cell disease among many others. One of the hurdles in using CO as a therapeutic agent is the development of pharmaceutically acceptable delivery forms for various indications. Along this line, we have developed organic CO prodrugs that allow for packing this gaseous molecule into a dosage form for the goal of "carbon monoxide in a pill." This should enable non-inhalation administration including oral and intravenous routes. These prodrugs have previously demonstrated efficacy in multiple animal models. To further understand the CO delivery efficiency of these prodrugs in relation to their efficacy, we undertook the first pharmacokinetic studies on these prodrugs. In doing so, we selected five representative prodrugs with different CO release kinetics and examined their pharmacokinetics after administration via oral, intraperitoneal, and intravenous routes. It was found that all three routes were able to elevate systemic CO level with delivery efficiency in the order of intravenous, oral, and intraperitoneal routes. CO prodrugs and their CO-released products were readily cleared from the circulation. CO prodrugs demonstrate promising pharmaceutical properties in terms of oral CO delivery and minimal drug accumulation in the body. This represents the very first study of the interplay among CO release kinetics, CO prodrug clearance, route of administration, and CO delivery efficiency.
Collapse
Affiliation(s)
- Minjia Wang
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Zhixiang Pan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Yingzhe Wang
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Ladie Kimberly De La Cruz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University of Mississippi, MS 38677, USA.
| |
Collapse
|
10
|
Hopper CP, De La Cruz LK, Lyles KV, Wareham LK, Gilbert JA, Eichenbaum Z, Magierowski M, Poole RK, Wollborn J, Wang B. Role of Carbon Monoxide in Host-Gut Microbiome Communication. Chem Rev 2020; 120:13273-13311. [PMID: 33089988 DOI: 10.1021/acs.chemrev.0c00586] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nature is full of examples of symbiotic relationships. The critical symbiotic relation between host and mutualistic bacteria is attracting increasing attention to the degree that the gut microbiome is proposed by some as a new organ system. The microbiome exerts its systemic effect through a diverse range of metabolites, which include gaseous molecules such as H2, CO2, NH3, CH4, NO, H2S, and CO. In turn, the human host can influence the microbiome through these gaseous molecules as well in a reciprocal manner. Among these gaseous molecules, NO, H2S, and CO occupy a special place because of their widely known physiological functions in the host and their overlap and similarity in both targets and functions. The roles that NO and H2S play have been extensively examined by others. Herein, the roles of CO in host-gut microbiome communication are examined through a discussion of (1) host production and function of CO, (2) available CO donors as research tools, (3) CO production from diet and bacterial sources, (4) effect of CO on bacteria including CO sensing, and (5) gut microbiome production of CO. There is a large amount of literature suggesting the "messenger" role of CO in host-gut microbiome communication. However, much more work is needed to begin achieving a systematic understanding of this issue.
Collapse
Affiliation(s)
- Christopher P Hopper
- Institute for Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Bavaria DE 97080, Germany.,Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, Florida 32611, United States
| | - Ladie Kimberly De La Cruz
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kristin V Lyles
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lauren K Wareham
- The Vanderbilt Eye Institute and Department of Ophthalmology & Visual Sciences, The Vanderbilt University Medical Center and School of Medicine, Nashville, Tennessee 37232, United States
| | - Jack A Gilbert
- Department of Pediatrics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Marcin Magierowski
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Cracow PL 31-531, Poland
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Sheffield S10 2TN, U.K
| | - Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg DE 79085, Germany.,Department of Anesthesiology, Perioperative and Pain Management, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Binghe Wang
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
11
|
Harnessing carbon monoxide-releasing platforms for cancer therapy. Biomaterials 2020; 255:120193. [DOI: 10.1016/j.biomaterials.2020.120193] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/19/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022]
|
12
|
Kasiński A, Zielińska-Pisklak M, Oledzka E, Sobczak M. Smart Hydrogels - Synthetic Stimuli-Responsive Antitumor Drug Release Systems. Int J Nanomedicine 2020; 15:4541-4572. [PMID: 32617004 PMCID: PMC7326401 DOI: 10.2147/ijn.s248987] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/28/2020] [Indexed: 12/19/2022] Open
Abstract
Among modern drug formulations, stimuli-responsive hydrogels also called "smart hydrogels" deserve a special attention. The basic feature of this system is the ability to change their mechanical properties, swelling ability, hydrophilicity, bioactive molecules permeability, etc., influenced by various stimuli, such as temperature, pH, electromagnetic radiation, magnetic field and biological factors. Therefore, stimuli-responsive matrices can be potentially used in tissue engineering, cell cultures and technology of innovative drug delivery systems (DDSs), releasing the active substances under the control of internal or external stimuli. Moreover, smart hydrogels can be used as injectable DDSs, due to gel-sol transition connected with in situ cross-linking process. Innovative smart hydrogel DDSs can be utilized as matrices for targeted therapy, which enhances the effectiveness of tumor chemotherapy and subsequently limits systemic toxicity. External stimulus sensitivity allows remote control over the drug release profile and gel formation. On the other hand, internal factors provide drg accumulation in tumor tissue and reduce the concentration of active drug form in healthy tissue. In this report, we summarise the basic knowledge and chemical strategies for the synthetic smart hydrogel DDSs applied in antitumor therapy.
Collapse
Affiliation(s)
- Adam Kasiński
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| | - Monika Zielińska-Pisklak
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| | - Ewa Oledzka
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| | - Marcin Sobczak
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| |
Collapse
|
13
|
Rossier J, Delasoie J, Haeni L, Hauser D, Rothen-Rutishauser B, Zobi F. Cytotoxicity of Mn-based photoCORMs of ethynyl-α-diimine ligands against different cancer cell lines: The key role of CO-depleted metal fragments. J Inorg Biochem 2020; 209:111122. [PMID: 32497818 DOI: 10.1016/j.jinorgbio.2020.111122] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022]
Abstract
A series of tricarbonyl manganese complexes bearing 4-ethynyl-2,2'-bipyridine and 5-ethynyl-1,10-phenanthroline α-diimine ligands were synthetized, characterized and conjugated to vitamin B12, previously used as a vector for drug delivery, to take advantage of its water solubility and specificity toward cancer cells. The compounds act as photoactivatable carbon monoxide-releasing molecules rapidly liberating on average ca. 2.3 equivalents of CO upon photo-irradiation. Complexes and conjugates were tested for their anticancer effects, both in the dark and following photo-activation, against breast cancer MCF-7, lung carcinoma A549 and colon adenocarcinoma HT29 cell lines as well as immortalized human bronchial epithelial cells 16HBE14o- as the non-carcinogenic control. Our results indicate that the light-induced cytotoxicity these molecules can be attributed to both their released CO and to their CO-depleted metal fragments including liberated ligands.
Collapse
Affiliation(s)
- Jeremie Rossier
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Joachim Delasoie
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Laetitia Haeni
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Daniel Hauser
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | | - Fabio Zobi
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
14
|
Delasoie J, Schiel P, Vojnovic S, Nikodinovic-Runic J, Zobi F. Photoactivatable Surface-Functionalized Diatom Microalgae for Colorectal Cancer Targeted Delivery and Enhanced Cytotoxicity of Anticancer Complexes. Pharmaceutics 2020; 12:E480. [PMID: 32466116 PMCID: PMC7285135 DOI: 10.3390/pharmaceutics12050480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Systemic toxicity and severe side effects are commonly associated with anticancer chemotherapies. New strategies based on enhanced drug selectivity and targeted delivery to cancer cells while leaving healthy tissue undamaged can reduce the global patient burden. Herein, we report the design, synthesis and characterization of a bio-inspired hybrid multifunctional drug delivery system based on diatom microalgae. The microalgae's surface was chemically functionalized with hybrid vitamin B12-photoactivatable molecules and the materials further loaded with highly active rhenium(I) tricarbonyl anticancer complexes. The constructs showed enhanced adherence to colorectal cancer (CRC) cells and slow release of the chemotherapeutic drugs. The overall toxicity of the hybrid multifunctional drug delivery system was further enhanced by photoactivation of the microalgae surface. Depending on the construct and anticancer drug, a 2-fold increase in the cytotoxic efficacy of the drug was observed upon light irradiation. The use of this targeted drug delivery strategy, together with selective spatial-temporal light activation, may lead to lower effective concentration of anticancer drugs, thereby reducing medication doses, possible side effects and overall burden for the patient.
Collapse
Affiliation(s)
- Joachim Delasoie
- Department of Chemistry, Fribourg University, Chemin du Musée 9, 1700 Fribourg, Switzerland; (J.D.); (P.S.)
| | - Philippe Schiel
- Department of Chemistry, Fribourg University, Chemin du Musée 9, 1700 Fribourg, Switzerland; (J.D.); (P.S.)
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.V.); (J.N.-R.)
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (S.V.); (J.N.-R.)
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin du Musée 9, 1700 Fribourg, Switzerland; (J.D.); (P.S.)
| |
Collapse
|
15
|
Cheng J, Zheng B, Cheng S, Zhang G, Hu J. Metal-free carbon monoxide-releasing micelles undergo tandem photochemical reactions for cutaneous wound healing. Chem Sci 2020; 11:4499-4507. [PMID: 34122908 PMCID: PMC8159483 DOI: 10.1039/d0sc00135j] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Carbon monoxide (CO) has shown broad biomedical applications. The site-specific delivery and controlled release of CO is of crucial importance to achieve maximum therapeutic benefits. The development of carbon monoxide (CO)-releasing polymers (CORPs) can increase the stability, optimize pharmacokinetic behavior, and reduce the side effects of small molecule precursors. However, almost all established CORPs were synthesized through a post functional approach, although the direct polymerization strategy is more powerful in controlling the chain compositions and architectures. Herein, a direct polymerization strategy is proposed toward metal-free CO-releasing polymers (CORPs) based on photoresponsive 3-hydroxyflavone (3-HF) derivatives. Such CO-releasing amphiphiles self-assemble into micelles, having excellent water-dispersity. Intriguingly, photo-triggered tandem photochemical reactions confer successive fluorescence transitions from blue-to-red-to-colorless, enabling self-reporting CO release in vitro and in vivo as a result of the incorporation of 3-HF derivatives. More importantly, the localized CO delivery of CORPs by taking advantage of the spatiotemporal control of light stimulus outperformed conventional metal carbonyls such as CORMs in terms of anti-inflammation and cutaneous wound healing. This work opens a novel avenue toward metal-free CORPs for potential biomedical applications.
Collapse
Affiliation(s)
- Jian Cheng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China Hefei 230026 Anhui China
| | - Bin Zheng
- School of Chemistry and Chemical Engineering, Hefei Normal University Hefei Anhui 230061 P. R. China
| | - Sheng Cheng
- Instrumental Analysis Center, Hefei University of Technology Hefei Anhui 230009 China
| | - Guoying Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China Hefei 230026 Anhui China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China Hefei 230026 Anhui China
| |
Collapse
|
16
|
Pinto MN, Mascharak PK. Light-assisted and remote delivery of carbon monoxide to malignant cells and tissues: Photochemotherapy in the spotlight. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2020.100341] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Reaction of carbon monoxide with cystathionine β-synthase: implications on drug efficacies in cancer chemotherapy. Future Med Chem 2020; 12:325-337. [PMID: 32031001 DOI: 10.4155/fmc-2019-0266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Photo-activatable carbon monoxide (CO)-releasing molecules (photoCORMs), have recently provided help to identify the salutary effects of CO in human pathophysiology. Among them notable is the ability of CO to sensitize chemotherapeutic-resistant cancer cells. Findings from our group have shown CO to mitigate drug resistance in certain cancer cells by the inhibition of cystathionine β-synthase (CBS), a key regulator of redox homeostasis in the cell. Diminution of the antioxidant capacity of cancer cells leads to sensitization to reactive oxygen species-producing drugs like doxorubicin and paclitaxel upon cotreatment with CO as well as in mitigating the drug effects of cisplatin. We hypothesize that the development of CO delivery techniques for coadministration with existing cancer treatment regimens may ultimately improve clinical outcomes in cancer therapy.
Collapse
|
18
|
Imberti C, Zhang P, Huang H, Sadler PJ. New Designs for Phototherapeutic Transition Metal Complexes. Angew Chem Int Ed Engl 2020; 59:61-73. [PMID: 31310436 PMCID: PMC6973108 DOI: 10.1002/anie.201905171] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/19/2019] [Indexed: 12/17/2022]
Abstract
In this Minireview, we highlight recent advances in the design of transition metal complexes for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT), and discuss the challenges and opportunities for the translation of such agents into clinical use. New designs for light-activated transition metal complexes offer photoactivatable prodrugs with novel targeted mechanisms of action. Light irradiation can provide spatial and temporal control of drug activation, increasing selectivity and reducing side-effects. The photophysical and photochemical properties of transition metal complexes can be controlled by the appropriate choice of the metal, its oxidation state, the number and types of ligands, and the coordination geometry.
Collapse
Affiliation(s)
- Cinzia Imberti
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Pingyu Zhang
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen)Sun Yat-sen UniversityGuangzhou510275China
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Peter J. Sadler
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
19
|
Yang X, de Caestecker M, Otterbein LE, Wang B. Carbon monoxide: An emerging therapy for acute kidney injury. Med Res Rev 2019; 40:1147-1177. [PMID: 31820474 DOI: 10.1002/med.21650] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/31/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
Treating acute kidney injury (AKI) represents an important unmet medical need both in terms of the seriousness of this medical problem and the number of patients. There is also a large untapped market opportunity in treating AKI. Over the years, there has been much effort in search of therapeutics with minimal success. However, over the same time period, new understanding of the underlying pathobiology and molecular mechanisms of kidney injury have undoubtedly helped the search for new therapeutics. Along this line, carbon monoxide (CO) has emerged as a promising therapeutic agent because of its demonstrated cytoprotective, and immunomodulatory effects. CO has also been shown to sensitize cancer, but not normal cells, to chemotherapy. This is particularly important in treating cisplatin-induced AKI, a common clinical problem that develops in patients receiving cisplatin therapies for a number of different solid organ malignancies. This review will examine and make the case that CO be developed into a therapeutic agent against AKI.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Mark de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
20
|
Kawahara B, Gao L, Cohn W, Whitelegge JP, Sen S, Janzen C, Mascharak PK. Diminished viability of human ovarian cancer cells by antigen-specific delivery of carbon monoxide with a family of photoactivatable antibody-photoCORM conjugates. Chem Sci 2019; 11:467-473. [PMID: 32190266 PMCID: PMC7067254 DOI: 10.1039/c9sc03166a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Antibodies conjugated to a photoactive transition metal carbonyl complex afford antigen-directed delivery of cytotoxic carbon monoxide to ovarian cancer cells.
Carbon monoxide (CO)-releasing antibody conjugates were synthesized utilizing a photoactivatable CO-releasing molecule (photoCORM) and mouse monoclonal antibodies linked by a biotin-streptavidin system. Different monoclonal antibodies raised against different surface-expressed antigens that are implicated in ovarian cancer afforded a family of antibody-photoCORM conjugates (Ab-photoCORMs). In an immunosorbent/cell viability assay, Ab-photoCORMs accumulated onto ovarian cancer cells expressing the target antigens, delivering cytotoxic doses of CO in vitro. The results described here provide the first example of an “immunoCORM”, a proof-of-the-concept antibody-drug conjugate that delivers a gaseous molecule as a warhead to ovarian cancer.
Collapse
Affiliation(s)
- Brian Kawahara
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , CA 95064 , USA .
| | - Lucy Gao
- Pasarow Mass Spectrometry Laboratory , Jane and Terry Semel Institute for Neuroscience and Human Behavior , University of California at Los Angeles , Los Angeles , CA 90095 , USA
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory , Jane and Terry Semel Institute for Neuroscience and Human Behavior , University of California at Los Angeles , Los Angeles , CA 90095 , USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory , Jane and Terry Semel Institute for Neuroscience and Human Behavior , University of California at Los Angeles , Los Angeles , CA 90095 , USA
| | - Suvajit Sen
- Department of Obstetrics and Gynecology , David Geffen School of Medicine , University of California at Los Angeles , Los Angeles , CA 90095 , USA
| | - Carla Janzen
- Department of Obstetrics and Gynecology , David Geffen School of Medicine , University of California at Los Angeles , Los Angeles , CA 90095 , USA
| | - Pradip K Mascharak
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , CA 95064 , USA .
| |
Collapse
|
21
|
Mn(I)-based photoCORMs for trackable, visible light-induced CO release and photocytotoxicity to cancer cells. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Imberti C, Zhang P, Huang H, Sadler PJ. New Designs for Phototherapeutic Transition Metal Complexes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905171] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cinzia Imberti
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 China
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen) Sun Yat-sen University Guangzhou 510275 China
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Peter J. Sadler
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
23
|
Pinto MN, Chakraborty I, Jimenez J, Murphy K, Wenger J, Mascharak PK. Therapeutic Potential of Two Visible Light Responsive Luminescent photoCORMs: Enhanced Cellular Internalization Driven by Lipophilicity. Inorg Chem 2019; 58:14522-14531. [DOI: 10.1021/acs.inorgchem.9b02121] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Miguel N. Pinto
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Indranil Chakraborty
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Jorge Jimenez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Katelyn Murphy
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - John Wenger
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Pradip K. Mascharak
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
24
|
Jimenez J, Pinto MN, Martinez-Gonzalez J, Mascharak PK. Photo-induced eradication of human colorectal adenocarcinoma HT-29 cells by carbon monoxide (CO) delivery from a Mn-based green luminescent photoCORM. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.088] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
25
|
Metal complex strategies for photo-uncaging the small molecule bioregulators nitric oxide and carbon monoxide. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Kawahara B, Ramadoss S, Chaudhuri G, Janzen C, Sen S, Mascharak PK. Carbon monoxide sensitizes cisplatin-resistant ovarian cancer cell lines toward cisplatin via attenuation of levels of glutathione and nuclear metallothionein. J Inorg Biochem 2018; 191:29-39. [PMID: 30458366 DOI: 10.1016/j.jinorgbio.2018.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 02/06/2023]
Abstract
Cisplatin resistance remains a major impediment to effective treatment of ovarian cancer. Despite initial platinum responsiveness, thiol-containing peptides and proteins, glutathione (GSH) and metallothionein (MT), bind and inactivate cisplatin in cancer cells. Indeed, high levels of GSH and MT in ovarian cancers impart cisplatin resistance and are predictive of poor prognosis. Cystathionine β-synthase (CBS), an enzyme involved in sulfur metabolism, is overexpressed in ovarian cancer tissues and is itself associated with cisplatin resistance. Treatment with exogenous carbon monoxide (CO), a known inhibitor of CBS, may mitigate cisplatin resistance in ovarian cancer cells by attenuation of GSH and MT levels. Using a photo-activated CO-releasing molecule (photoCORM), [Mn(CO)3(phen)(PTA)]CF3SO3 (phen = 1,10-phenanthroline, PTA = 1,3,5-triza-7-phosphaadamantane) we assessed the ability of CO to sensitize established cisplatin-resistant ovarian cancer cell lines to cisplatin. Cisplatin-resistant cells, treated with both cisplatin and CO, exhibited significantly lower cell viability and increased poly (ADP-ribose) polymerase (PARP) cleavage versus those treated with cisplatin alone. These cisplatin-resistant cell lines overexpressed CBS and had increased steady state levels of GSH and expression of nuclear MT. Both CO treatment and lentiviral-mediated silencing of CBS attenuated GSH and nuclear MT expression in cisplatin resistant cells. We have demonstrated that CO, delivered from a photoCORM, sensitizes established cisplatin-resistant cell lines to cisplatin. Furthermore, we have presented strong evidence that the effects of CO in circumventing chemotherapeutic drug resistance is at least in part mediated by the inactivation of endogenous CBS.
Collapse
Affiliation(s)
- Brian Kawahara
- Contribution from Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, United States of America
| | - Sivakumar Ramadoss
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States of America
| | - Gautam Chaudhuri
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States of America
| | - Carla Janzen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States of America
| | - Suvajit Sen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, United States of America.
| | - Pradip K Mascharak
- Contribution from Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, United States of America.
| |
Collapse
|
27
|
Carmona FJ, Maldonado CR, Ikemura S, Romão CC, Huang Z, Xu H, Zou X, Kitagawa S, Furukawa S, Barea E. Coordination Modulation Method To Prepare New Metal-Organic Framework-Based CO-Releasing Materials. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31158-31167. [PMID: 30152684 DOI: 10.1021/acsami.8b11758] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aluminum-based metal-organic frameworks (MOFs), [Al(OH)(SDC)] n, (H2SDC: 4,4'-stilbenedicarboxylic acid), also known as CYCU-3, were prepared by means of the coordination modulation method to produce materials with different crystal size and morphology. In particular, we screened several reagent concentrations (20-60 mM) and modulator/ligand ratios (0-50), leading to 20 CYCU x_ y materials ( x: reagent concentration, y = modulator/ligand ratio) with different particle size and morphology. Noteworthy, the use of high modulator/ligand ratio gives rise to a new phase of CYCU-3 (CYCU-3' x_50 series), which was structurally analyzed. Afterward, to test the potential of these materials as CO-prodrug carriers, we selected three of them to adsorb the photo- and bioactive CO-releasing molecule (CORM) ALF794 [Mo(CNCMe2CO2H)3(CO)3] (CNCMe2CO2H = 2-isocyano-2-methyl propionic acid): (i) CYCU-3 20_0, particles in the nanometric range; (ii) CYCU-3 50_5, bar-type particles with heterogeneous size, and (iii) CYCU-3' 50_50, a new phase analogous to pristine CYCU-3. The corresponding hybrid materials were fully characterized, revealing that CYCU-3 20_0 with the smallest particle size was not stable under the drug loading conditions. Regarding the other two materials, similar ALF794 loadings were found (0.20 and 0.19 CORM/MOF molar ratios for ALF794@CYCU-3 50_5 and ALF794@CYCU-3' 50_50, respectively). In addition, these hybrid systems behave as CO-releasing materials (CORMAs), retaining the photoactive properties of the pristine CORM in both phosphate saline solution and solid state. Finally, the metal leaching studies in solution confirmed that ALF794@CYCU-3' 50_50 shows a good retention capacity toward the potentially toxic molybdenum fragments (75% of retention after 72 h), which is the lowest value reported for a MOF-based CORMA to date.
Collapse
Affiliation(s)
- Francisco J Carmona
- Department of Inorganic Chemistry , University of Granada , Av. Fuentenueva S/N , 18071 Granada , Spain
| | - Carmen R Maldonado
- Department of Inorganic Chemistry , University of Granada , Av. Fuentenueva S/N , 18071 Granada , Spain
| | - Shuya Ikemura
- Institute for Integrated Cell-Material Sciences (WPI-iCEMs) , Kyoto University , Yoshida , Sakyo-ku, Kyoto 606-8501 , Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering , Katsura , Nishikyo-ku, Kyoto 615-8510 , Japan
| | - Carlos C Romão
- Instituto de Tecnologia Química e Biológica , Universidade Nova de Lisboa , Av. da República , EAN, 2780-157 Oeiras , Portugal
- Proterris (Portugal), Instituto de Biologia Experimental e Tecnológica , Av. da República , EAN, 2780-157 Oeiras , Portugal
| | - Zhehao Huang
- Department of Materials and Environmental Chemistry, Berzelii Centre EXSELENT on Porous Materials, and Inorganic and Structural Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Hongyi Xu
- Department of Materials and Environmental Chemistry, Berzelii Centre EXSELENT on Porous Materials, and Inorganic and Structural Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Berzelii Centre EXSELENT on Porous Materials, and Inorganic and Structural Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCEMs) , Kyoto University , Yoshida , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCEMs) , Kyoto University , Yoshida , Sakyo-ku, Kyoto 606-8501 , Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering , Katsura , Nishikyo-ku, Kyoto 615-8510 , Japan
| | - Elisa Barea
- Department of Inorganic Chemistry , University of Granada , Av. Fuentenueva S/N , 18071 Granada , Spain
| |
Collapse
|
28
|
Popova M, Lazarus LS, Ayad S, Benninghoff AD, Berreau LM. Visible-Light-Activated Quinolone Carbon-Monoxide-Releasing Molecule: Prodrug and Albumin-Assisted Delivery Enables Anticancer and Potent Anti-Inflammatory Effects. J Am Chem Soc 2018; 140:9721-9729. [PMID: 29983046 DOI: 10.1021/jacs.8b06011] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The delivery of controlled amounts of carbon monoxide (CO) to biological targets is of significant current interest. Very few CO-releasing compounds are currently known that can be rigorously controlled in terms of the location and amount of CO released. To address this deficiency, we report herein a new metal-free, visible-light-induced CO-releasing molecule (photoCORM) and its prodrug oxidized form, which offer new approaches to controlled, localized CO delivery. The new photoCORM, based on a 3-hydroxybenzo[ g]quinolone framework, releases 1 equiv of CO upon visible-light illumination under a variety of biologically relevant conditions. This nontoxic compound can be tracked prior to CO release using fluorescence microscopy and produces a nontoxic byproduct following CO release. An oxidized prodrug form of the photoCORM is reduced by cellular thiols, providing an approach toward activation in the reducing environment of cancer cells. Strong noncovalent affinity of the nonmetal photoCORM to albumin enables use of an albumin:photoCORM complex for targeted CO delivery to cancer cells. This approach produced cytotoxicity IC50 values among the lowest reported to date for CO delivery to cancer cells by a photoCORM. This albumin:photoCORM complex is also the first CO delivery system to produce significant anti-inflammatory effects when introduced at nanomolar photoCORM concentration.
Collapse
Affiliation(s)
- Marina Popova
- Department of Chemistry & Biochemistry , Utah State University , 0300 Old Main Hill , Logan , Utah 84322-0300 , United States
| | - Livia S Lazarus
- Department of Chemistry & Biochemistry , Utah State University , 0300 Old Main Hill , Logan , Utah 84322-0300 , United States
| | - Suliman Ayad
- Department of Chemistry & Biochemistry , Florida State University , Tallahassee , Florida 32306-4390 , United States
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences , Utah State University , Logan , Utah 84322-4815 , United States
| | - Lisa M Berreau
- Department of Chemistry & Biochemistry , Utah State University , 0300 Old Main Hill , Logan , Utah 84322-0300 , United States
| |
Collapse
|
29
|
Abstract
Photoactivated chemotherapy is an approach where a biologically active compound is protected against interaction with the cell environment by a light-cleavable protecting group, and unprotected by light irradiation. As such, PACT represents a major scientific opportunity for developing new bioactive inorganic compounds. However, the societal impact of this approach will only take off if the PACT field is used to address real societal challenges, i.e., therapeutic questions that make sense in a clinical context, rather than purely chemical questions. In particular, I advocate here that the field has become mature enough to switch from a compound-based approach, where a particular cancer model is chosen only to demonstrate the utility of a compound, to a disease-based approach, where the question of which disease to cure comes first: which PACT compound should I make to solve that particular clinical problem? The advantages and disadvantages of PACT vs. other phototherapeutic techniques are discussed, and a roadmap towards real clinical applications of PACT is drawn.
Collapse
Affiliation(s)
- Sylvestre Bonnet
- Leiden Institute of Chemistry, Einsteinweg 55, 2333CC Leiden, The Netherlands.
| |
Collapse
|
30
|
Sakla R, Jose DA. Vesicles Functionalized with a CO-Releasing Molecule for Light-Induced CO Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14214-14220. [PMID: 29600840 DOI: 10.1021/acsami.8b03310] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, a new type of methodology to deliver carbon monoxide (CO) for biological applications has been introduced. An amphiphilic manganese carbonyl complex (1.Mn) incorporated into the 1,2-distearoyl-sn-glycero-3-phosphocholine lipid vesicles has been reported first time for the photoinduced release of CO. The liposomes (Ves-1.Mn) gradually released CO under light at 365 nm over a period of 50 min with a half-time of 26.5 min. The CO-releasing ability of vesicles appended with 1.Mn complexes has been confirmed by myoglobin assay and infrared study. The vesicles appended with 1.Mn have the advantages of biocompatibility, water solubility, and steady and slow CO release. This approach could be a rational approach for applying various water-insoluble photoinduced CO donors in aqueous media by using vesicles as a nanocarrier for CO release.
Collapse
Affiliation(s)
- Rahul Sakla
- Department of Chemistry , National Institute of Technology (NIT) Kurukshetra , Kurukshetra 136119 , Haryana , India
| | - D Amilan Jose
- Department of Chemistry , National Institute of Technology (NIT) Kurukshetra , Kurukshetra 136119 , Haryana , India
| |
Collapse
|
31
|
Jimenez J, Chakraborty I, Dominguez A, Martinez-Gonzalez J, Sameera WMC, Mascharak PK. A Luminescent Manganese PhotoCORM for CO Delivery to Cellular Targets under the Control of Visible Light. Inorg Chem 2018; 57:1766-1773. [DOI: 10.1021/acs.inorgchem.7b02480] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jorge Jimenez
- Department of Chemistry and
Biochemistry, University of California, Santa Cruz, Santa
Cruz, California 95064, United States
| | - Indranil Chakraborty
- Department of Chemistry and
Biochemistry, University of California, Santa Cruz, Santa
Cruz, California 95064, United States
| | - Annmarie Dominguez
- Department of Chemistry and
Biochemistry, University of California, Santa Cruz, Santa
Cruz, California 95064, United States
| | - Jorge Martinez-Gonzalez
- Department of Chemistry and
Biochemistry, University of California, Santa Cruz, Santa
Cruz, California 95064, United States
| | - W. M. Chamil Sameera
- Department of Chemistry and
Biochemistry, University of California, Santa Cruz, Santa
Cruz, California 95064, United States
| | - Pradip K. Mascharak
- Department of Chemistry and
Biochemistry, University of California, Santa Cruz, Santa
Cruz, California 95064, United States
| |
Collapse
|
32
|
Slanina T, Šebej P. Visible-light-activated photoCORMs: rational design of CO-releasing organic molecules absorbing in the tissue-transparent window. Photochem Photobiol Sci 2018; 17:692-710. [DOI: 10.1039/c8pp00096d] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rational design of visible-light-activatable transition-metal-free CO-releasing molecules with an emphasis on mechanistic details of the CO release.
Collapse
Affiliation(s)
- Tomáš Slanina
- Institute for Organic Chemistry and Chemical Biology
- Goethe-University Frankfurt
- 60438 Frankfurt
- Germany
| | - Peter Šebej
- Research Centre for Toxic Compounds in the Environment
- Faculty of Science
- Masaryk University
- 625 00 Brno
- Czech Republic
| |
Collapse
|