1
|
Jiang Y, Xing M, Sun J, Zeng XA, Brennan C, Chandrapala J, Majzoobi M, Sun B. Construction of resveratrol and quercetin nanoparticles based on folic acid targeted Maillard products between Jiuzao glutelin isolate and carboxymethyl chitosan: Improved stability and function. Food Chem 2024; 450:139296. [PMID: 38636381 DOI: 10.1016/j.foodchem.2024.139296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/02/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
Advanced targeted nanoparticles (NPs) were designed to enhance the targeted delivery of resveratrol (RES) and quercetin (QUE) by utilizing carboxymethyl chitosan (CTS) and Jiuzao glutelin isolate (JGI) conjugates. Briefly, RES and QUE were encapsuled within CTS-JGI-2 (CTS/JGI, m/m, 2:1). The carrier's targeting properties were further improved through the incorporation of folic acid (FA) and polyethylenimine (PEI). Moreover, the stability against digestion was enhanced by incorporating baker yeast cell walls (BYCWs) to construct RES-QUE/FA-PEI/CTS-JGI-2/MAT/BYCW NPs. The results demonstrated that FA-PEI/CTS-JGI-2/MAT/BYCW NPs could improve cellular uptake and targeting property of RES and QUE through endocytosis of folic acid receptors (FOLRs). Additionally, RES-QUE successfully alleviated LPS- and DSS-induced inflammation by regulating NF-κB/IkBa/AP-1 and AMPK/SIRT1signaling pathways and reducing the secretion of inflammatory mediators and factors. These findings indicate FA-PEI/CTS-JGI-2/MAT/BYCW NPs hold promise as an oral drug delivery system with targeted delivery capacities for functional substances prone to instability in dietary supplements.
Collapse
Affiliation(s)
- Yunsong Jiang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China; School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China; School of Science, RMIT, Melbourne, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| | - Mengzhen Xing
- Key Laboratory of New Material Research Institute, Department of Pharmaceutical Research Institute, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China
| | - Jinyuan Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China.
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Charles Brennan
- School of Science, RMIT, Melbourne, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| | - Jayani Chandrapala
- School of Science, RMIT, Melbourne, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| | - Mahsa Majzoobi
- School of Science, RMIT, Melbourne, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| |
Collapse
|
2
|
Zhao Y, Jia C, Yao Z, Chen G, Huang G, Li H, Lu L, Jin T, Tang Y, Zhu Z, Zhang X. Dexamethasone Pretreatment Potentiates a Folic Acid-Functionalized Delivery System for Enhanced Lung Cancer Therapy. Mol Pharm 2024; 21:1077-1089. [PMID: 38346386 DOI: 10.1021/acs.molpharmaceut.3c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Folic acid (FA) has been widely engineered to promote the targeted delivery of FA-modified nanoparticles (NPs) by recognizing the folate receptor α (FRα). However, the efficacy of FA-targeted therapy significantly varied with the abundance of FRα and natural immunoglobulin levels in different tumors. Therefore, a sequential therapy of dexamethasone (Dex)-induced FRα amplification and immunosuppression combined with FA-functionalized doxorubicin (DOX) micelles to synergistically suppress tumor proliferation was proposed in this study. In brief, a pH/reduction-responsive FA-functionalized micelle (FCSD) was obtained by grafting FA, derivatization-modified cholesterol, and 2,3-dimethylmaleic anhydride onto a chitosan oligosaccharide. The obtained FCSD/DOX NPs can effectively deliver DOX in tumors, and their targeting efficiency can be further improved with Dex pretreatment to decrease the immunoglobulin M (IgM) content in serum and amplify FRα levels on the surface of M109 cells. After internalization, charge reversal and disulfide bond breakage of FCSD vectors under the stimulation of tumor extracellular pH (pHe) and intracellular glutathione (GSH) would contribute to the disintegration of vectors and the rapid release of DOX. The sequential therapy that combined Dex pretreatment and targeted chemotherapy by FCSD/DOX NPs demonstrated superior tumor suppression compared with monotherapy, which is expected to provide a potential strategy for FRα-positive lung cancer patients.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Changhao Jia
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zhixin Yao
- School of Pharmacy, Yancheng Teachers' University, Yancheng 224002, China
| | - Gang Chen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Gui Huang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Children's Hospital of Wujiang District, Suzhou 215200, China
| | - Hui Li
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Linghong Lu
- Children's Hospital of Wujiang District, Suzhou 215200, China
| | - Taiwei Jin
- Children's Hospital of Wujiang District, Suzhou 215200, China
| | - Yan Tang
- School of Pharmacy, Yancheng Teachers' University, Yancheng 224002, China
| | - Zengyan Zhu
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Xuenong Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Péraudeau E, Renoux B, Emambux S, Poinot P, Châtre R, Thoreau F, Riss Yaw B, Tougeron D, Clarhaut J, Papot S. Combination of Targeted Therapies for Colorectal Cancer Treatment. Mol Pharm 2023; 20:4537-4545. [PMID: 37579031 DOI: 10.1021/acs.molpharmaceut.3c00224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The design of innovative therapeutic strategies enabling the selective destruction of tumor cells while sparing healthy tissues remains highly challenging in cancer therapy. Here, we show that the combination of two targeted therapies, including bevacizumab (Bev), and a β-glucuronidase-responsive albumin-binding prodrug of monomethyl auristatin E (MMAE), is efficient for the treatment of colorectal cancer implanted in mice. This combined therapy produces a therapeutic activity superior to that of the association of FOLFOX and Bev currently used to treat patients with this pathology. The increased anticancer efficacy is due to either a synergistic or an additive effect between Bev and MMAE selectively released from the glucuronide prodrug in the tumor microenvironment. Since numerous drug delivery systems such as antibody-drug conjugates employ MMAE as a cytotoxic payload, this finding may be of great interest for improving their therapeutic index by combining them with Bev, particularly for the therapy of colorectal cancer.
Collapse
Affiliation(s)
- Elodie Péraudeau
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
- CHU de Poitiers, 86021 Poitiers, France
| | - Brigitte Renoux
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
| | - Sheik Emambux
- CHU de Poitiers, 86021 Poitiers, France
- Department of Medical Oncology, Poitiers University Hospital, 86021 Poitiers, France
| | - Pauline Poinot
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
| | - Rémi Châtre
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
| | - Fabien Thoreau
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
| | - Benjamin Riss Yaw
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
| | - David Tougeron
- CHU de Poitiers, 86021 Poitiers, France
- Department of Gastroenterology and Hepatology, Poitiers University Hospital, 86021 Poitiers, France
| | - Jonathan Clarhaut
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
- CHU de Poitiers, 86021 Poitiers, France
| | - Sébastien Papot
- Equipe Labellisée Ligue Contre le Cancer, Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel-Brunet, TSA 51106, 86073 Poitiers, Cedex 9, France
| |
Collapse
|
4
|
Wang D, Gu W, Chen W, Zhou J, Yu L, Kook Kim B, Zhang X, Seung Kim J. Advanced nanovaccines based on engineering nanomaterials for accurately enhanced cancer immunotherapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Wang DD, Zhang XN. Advances in receptor modulation strategies for flexible, efficient, and enhanced antitumor efficacy. J Control Release 2021; 333:418-447. [PMID: 33812919 DOI: 10.1016/j.jconrel.2021.03.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022]
Abstract
Tumor-sensitivity, effective transport, and precise delivery to tumor cells of nano drug delivery systems (NDDs) have been great challenges to cancer therapy in recent years. The conventional targeting approach involves actively installing the corresponding ligand on the nanocarriers, which is prone to recognize the antigen blasts overexpressed on the surface of tumor cells. However, there are some probable limitations for the active tumor-targeting systems in vivo as follows: a. the limited ligand amount of modifications; b. possible steric hindrance, which was likely to prevent ligand-receptor interaction during the delivery process. c. the restrained antigen saturation highly expressed on the cell membrane, will definitely decrease the specificity and often lead to "off-target" effects of NDDs; and d. water insolubility of nanocarriers due to excess of ligands modification. Obviously, any regulation of receptors on surface of tumor cells exerted an important influence on the delivery of targeting systems. Herein, receptor upregulation was mostly desired for enhancing targeted therapy from the cellular level. This technique with the amplification of receptors has the potential to enhance tumor sensitivity towards corresponding ligand-modified nanoparticles, and thereby increasing the effective therapeutic concentration as well as improving the efficacy of chemotherapy. The enhancement of positively expressed receptors on tumor cells and receptor-dependent therapeutic agents or NDDs with an assembled "self-promoting" effect contributes to increasing cell sensitivity to NPs, and will provide a basic platform for clinical therapeutic practice. In this review, we highlight the significance of modulating various receptors on different types of cancer cells for drug delivery and therapeutic benefits.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Xue-Nong Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
6
|
Wang D, Li H, Chen W, Yang H, Liu Y, You B, Zhang X. Efficient tumor-targeting delivery of siRNA via folate-receptor mediated biomimetic albumin nanoparticles enhanced by all-trans retinoic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111583. [DOI: 10.1016/j.msec.2020.111583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/23/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
|
7
|
Jin X, Zhang J, Jin X, Liu L, Tian X. Folate Receptor Targeting and Cathepsin B-Sensitive Drug Delivery System for Selective Cancer Cell Death and Imaging. ACS Med Chem Lett 2020; 11:1514-1520. [PMID: 32832017 DOI: 10.1021/acsmedchemlett.0c00031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022] Open
Abstract
In this work, a folate receptor (FR)-mediated dual-targeting drug delivery system was synthesized to improve the tumor-killing efficiency and inhibit the side effects of anticancer drugs. We designed and synthesized an FR-mediated fluorescence probe (FA-Rho) and FR-mediated cathepsin B-sensitive drug delivery system (FA-GFLG-SN38). FA-GFLG-SN38 is composed of the FR ligand (folic acid, FA), the tetrapeptide substrate for cathepsin B (GFLG), and an anticancer drug (SN38). The rhodamine B (Rho)-labeled probe FA-Rho is suitable for specific fluorescence imaging of SK-Hep-1 cells overexpressing FR and inactive in FR-negative A549 and 16-HBE cells. FA-GFLG-SN38 exhibited strong cytotoxicity against FR-overexpressing SK-Hep-1, HeLa, and Siha cells, with IC50 values of 2-3 μM, but had no effect on FR-negative A549 and 16-HBE cells. The experimental results show that the FA-CFLG-SN38 drug delivery system proposed by us can effectively inhibit tumor proliferation in vitro, and it can be adopted for the diagnostics of tumor tissues and provide a basis for effective tumor therapy.
Collapse
Affiliation(s)
- Xiangmei Jin
- Department of Chemistry, Yanbian University, Yanji 133000, Jilin, China
| | - Jun Zhang
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji 133000, Jilin, China
| | - Xiaoyan Jin
- Department of Chemistry, Yanbian University, Yanji 133000, Jilin, China
| | - Lan Liu
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji 133000, Jilin, China
| | - Xizhe Tian
- Department of Chemistry, Yanbian University, Yanji 133000, Jilin, China
| |
Collapse
|
8
|
In vivo synthesis of triple-loaded albumin conjugate for efficient targeted cancer chemotherapy. J Control Release 2020; 327:19-25. [PMID: 32777236 DOI: 10.1016/j.jconrel.2020.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022]
Abstract
The development of selective anticancer drugs avoiding side effects met in the course of almost all current treatments is of major interest for cancer patients. Here, we report on a novel β-glucuronidase-responsive drug delivery system allowing the in vivo synthesis of triple-loaded albumin conjugate. Following intravenous administration, the glucuronide prodrug reacts in the blood stream with the cysteine-34 residue of circulating albumin through thio-Michael addition, enabling the bioconjugation of three Monomethylauristatin E (MMAE) molecules to the plasmatic protein. The albumin conjugate then accumulates in malignant tissues where tumor-associated β-glucuronidase triggers the selective release of the whole transported drugs. By operating this way, the trimeric glucuronide prodrug produces remarkable anticancer activity on orthotopic MIA PaCa-2 pancreatic tumors, leading to dramatic reduction or even remission of tumors (3/8 mice).
Collapse
|
9
|
Shi H, van Steenbergen MJ, Lou B, Liu Y, Hennink WE, Kok RJ. Folate decorated polymeric micelles for targeted delivery of the kinase inhibitor dactolisib to cancer cells. Int J Pharm 2020; 582:119305. [PMID: 32278056 DOI: 10.1016/j.ijpharm.2020.119305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
Abstract
One of the main challenges in clinical translation of polymeric micelles is retention of the drug in the nanocarrier system upon its systemic administration. Core crosslinking and coupling of the drug to the micellar backbone are common strategies to overcome these issues. In the present study, polymeric micelles were prepared for tumor cell targeting of the kinase inhibitor dactolisib which inhibits both the mammalian Target of Rapamycin (mTOR) kinase and phosphatidylinositol-3-kinase (PI3K). We employed platinum(II)-based linker chemistry to couple dactolisib to the core of poly(ethylene glycol)-b-poly(acrylic acid) (PEG-b-PAA) polymeric micelles. The formed dactolisib-PEG-PAA unimers are amphiphilic and self-assemble in an aqueous milieu into core-shell polymeric micelles. Folate was conjugated onto the surface of the micelles to yield folate-decorated polymeric micelles which can target folate receptor over-expressing tumor cells. Fluorescently labeled polymeric micelles were prepared using a lissamine-platinum complex linked in a similar manner as dactolisib. Dactolisib polymeric micelles showed good colloidal stability in water and released the coupled drug in buffers containing chloride or glutathione. Folate decorated micelles were avidly internalized by folate-receptor-positive KB cells and displayed targeted cellular cytotoxicity at 50-75 nM IC50. In conclusion, we have prepared a novel type of folate-receptor targeted polymeric micelles in which platinum(II) linker chemistry modulates drug retention and sustained release of the coupled inhibitor dactolisib.
Collapse
Affiliation(s)
- Haili Shi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Mies J van Steenbergen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Bo Lou
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Yanna Liu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Robbert J Kok
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands.
| |
Collapse
|
10
|
Cerrizuela S, Vega-Lopez GA, Aybar MJ. The role of teratogens in neural crest development. Birth Defects Res 2020; 112:584-632. [PMID: 31926062 DOI: 10.1002/bdr2.1644] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/11/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022]
Abstract
The neural crest (NC), discovered by Wilhelm His 150 years ago, gives rise to a multipotent migratory embryonic cell population that generates a remarkably diverse and important array of cell types during the development of the vertebrate embryo. These cells originate in the neural plate border (NPB), which is the ectoderm between the neural plate and the epidermis. They give rise to the neurons and glia of the peripheral nervous system, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies are a class of congenital diseases resulting from the abnormal induction, specification, migration, differentiation or death of NC cells (NCCs) during embryonic development and have an important medical and societal impact. In general, congenital defects affect an appreciable percentage of newborns worldwide. Some of these defects are caused by teratogens, which are agents that negatively impact the formation of tissues and organs during development. In this review, we will discuss the teratogens linked to the development of many birth defects, with a strong focus on those that specifically affect the development of the NC, thereby producing neurocristopathies. Although increasing attention is being paid to the effect of teratogens on embryonic development in general, there is a strong need to critically evaluate the specific role of these agents in NC development. Therefore, increased understanding of the role of these factors in NC development will contribute to the planning of strategies aimed at the prevention and treatment of human neurocristopathies, whose etiology was previously not considered.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Manuel J Aybar
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
11
|
Renoux B, Fangous L, Hötten C, Péraudeau E, Eddhif B, Poinot P, Clarhaut J, Papot S. A β-glucuronidase-responsive albumin-binding prodrug programmed for the double release of monomethyl auristatin E. MEDCHEMCOMM 2018; 9:2068-2071. [PMID: 30746064 PMCID: PMC6335994 DOI: 10.1039/c8md00466h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/25/2018] [Indexed: 01/18/2023]
Abstract
We report on the synthesis, in vitro and in vivo biological evaluations of a dimeric β-glucuronidase-responsive albumin-binding prodrug designed for the double release of MMAE upon a single enzymatic activation step. This prodrug produced a significant antitumour activity in mice bearing subcutaneous LS174T colorectal adenocarcinoma xenografts without inducing side effects.
Collapse
Affiliation(s)
- Brigitte Renoux
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP) , Université de Poitiers , CNRS, groupe "Systèmes Moléculaires Programmés" , 4 rue Michel Brunet, TSA 51106 , F-86073 Poitiers , France .
| | - Laure Fangous
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP) , Université de Poitiers , CNRS, groupe "Systèmes Moléculaires Programmés" , 4 rue Michel Brunet, TSA 51106 , F-86073 Poitiers , France .
| | - Camille Hötten
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP) , Université de Poitiers , CNRS, groupe "Systèmes Moléculaires Programmés" , 4 rue Michel Brunet, TSA 51106 , F-86073 Poitiers , France .
| | - Elodie Péraudeau
- CHU de Poitiers , 2 rue de la Miléterie , CS 90577 , F-86021 Poitiers , France
| | - Balkis Eddhif
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP) , Université de Poitiers , CNRS, équipe E.BiCOM , France
| | - Pauline Poinot
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP) , Université de Poitiers , CNRS, équipe E.BiCOM , France
| | - Jonathan Clarhaut
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP) , Université de Poitiers , CNRS, groupe "Systèmes Moléculaires Programmés" , 4 rue Michel Brunet, TSA 51106 , F-86073 Poitiers , France .
- CHU de Poitiers , 2 rue de la Miléterie , CS 90577 , F-86021 Poitiers , France
| | - Sébastien Papot
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP) , Université de Poitiers , CNRS, groupe "Systèmes Moléculaires Programmés" , 4 rue Michel Brunet, TSA 51106 , F-86073 Poitiers , France .
| |
Collapse
|
12
|
Malekmohammadi S, Hadadzadeh H, Amirghofran Z. Preparation of folic acid-conjugated dendritic mesoporous silica nanoparticles for pH-controlled release and targeted delivery of a cyclometallated gold(III) complex as an antitumor agent. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Li H, Jin H, Wan W, Wu C, Wei L. Cancer nanomedicine: mechanisms, obstacles and strategies. Nanomedicine (Lond) 2018; 13:1639-1656. [PMID: 30035660 DOI: 10.2217/nnm-2018-0007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Targeting nanoparticles to cancers for improved therapeutic efficacy and decreased side effects remains a popular concept in the past decades. Although the enhanced permeability and retention effect serves as a key rationale for all the currently commercialized nanoformulations, it does not enable uniform delivery of nanoparticles to all tumorous regions in all patients with sufficient quantities. Also, the increase in overall survival is often modest. Many factors may influence the delivering process of nanoparticles, which must be taken into consideration for the promise of nanomedicine in patients to be realized. Herein, we review the mechanisms and influencing factors during the delivery of cancer therapeutics and summarize current strategies that have been developed for the fabrication of smart drug delivery systems.
Collapse
Affiliation(s)
- Huafei Li
- Department of Pathology, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
- Tumor Immunology & Gene Therapy Center, Third Affiliated Hospital of the Second Military Medical University, 225 Changhai Road, Shanghai, 200438, PR China
- International Joint Cancer Institute, Translational Medicine Institute, the Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, PR China
- School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, PR China
| | - Hai Jin
- Department of Thoracic Surgery/LaboratoryDiagnosis, First Affiliated Hospital of the Second Military Medical University,168 Changhai Road, Shanghai, 200438, PR China
| | - Wei Wan
- Department of Orthopedic Oncology, Spine Tumor Center, Second Affiliated Hospital of the Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, PR China
| | - Cong Wu
- Department of Thoracic Surgery/LaboratoryDiagnosis, First Affiliated Hospital of the Second Military Medical University,168 Changhai Road, Shanghai, 200438, PR China
| | - Lixin Wei
- Tumor Immunology & Gene Therapy Center, Third Affiliated Hospital of the Second Military Medical University, 225 Changhai Road, Shanghai, 200438, PR China
| |
Collapse
|
14
|
Malekmohammadi S, Hadadzadeh H, Farrokhpour H, Amirghofran Z. Immobilization of gold nanoparticles on folate-conjugated dendritic mesoporous silica-coated reduced graphene oxide nanosheets: a new nanoplatform for curcumin pH-controlled and targeted delivery. SOFT MATTER 2018; 14:2400-2410. [PMID: 29512668 DOI: 10.1039/c7sm02248d] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In the present study, a new sandwich-like nanocomposite as a multifunctional smart nanocarrier for curcumin (Cur) targeted delivery and cell imaging was prepared by immobilization of gold nanoparticles on folic acid-modified dendritic mesoporous silica-coated reduced graphene oxide nanosheets (AuNPs@GFMS). The physical and chemical properties of the nanocomposite were investigated by atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis, field-emission scanning electron microscopy (FE-SEM), Fourier transformation infrared (FT-IR), and Brunauer-Emmett-Teller (BET) surface area analysis. The nanocarrier exhibits a number of interesting properties, including good biocompatibility, biodegradability, and suitable surface area, which results in high drug loading capacity. In addition, this new drug delivery system showed sustained-release and pH-responsive properties. The in vitro cytotoxicity test of the free curcumin, free nanocarrier (AuNPs@GFMS), curcumin-loaded folate-conjugated nanocarriers (Cur-AuNPs@GFMS), and curcumin-loaded nanocarriers without folate-conjugation (Cur-AuNPs@GAMS) against two human cancer cell lines, including MCF-7 (human breast carcinoma cell lines) and A549 (human lung carcinoma cell lines) demonstrated that the therapeutic efficacy of Cur-AuNPs@GFMS is significantly greater than those of other compounds because the cancerous cells can uptake the folate-conjugated drug nanocarrier via a receptor-mediated mechanism. Fluorescence microscopic images and different staining techniques were also used to visualize the cellular uptake, anticancer activity, specific targeting ability, and photothermal potency of Cur-AuNPs@GFMS toward the MCF-7 cancer cells. The obtained results proved that the proposed system, Cur-AuNPs@GFMS, can be used as a potent anticancer agent in targeted cancer therapies for breast cancer.
Collapse
Affiliation(s)
- Samira Malekmohammadi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hassan Hadadzadeh
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hossein Farrokhpour
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Zahra Amirghofran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|