1
|
Gao L, Zhang Y, Feng M, Shen M, Yang L, Wei B, Zhou Y, Zhang Z. HER3: Updates and current biology function, targeted therapy and pathologic detecting methods. Life Sci 2024; 357:123087. [PMID: 39366553 DOI: 10.1016/j.lfs.2024.123087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
Being a member of the EGFR tyrosine kinase family, HER3 has been shown to be overexpressed in a number of cancers, including breast cancer (BC). The kinase activity of HER3 is extremely low, and it forms heterodimers with partners, HER2 in particular, that promote biological processes like cell migration, survival, and proliferation by activating downstream carcinogenic signaling pathways. The overexpression of HER3 is also directly linked to tumor invasion, metastasis, and a poor prognosis. Despite the relatively low expression of HER3 compared to EGFR and HER2, a lot of targeted drugs are making their way into clinical trials and seem to have a bright further. This review aims to summarize the relationship between HER3 overexpression, mutations, and carcinogenicity and drug resistance, starting from the unique structure and kinase activity of HER3. Simultaneously, numerous approaches to HER3 targeted therapy are enumerated, and the clinical detection methods for HER3 that are commonly employed in pathology are sorted and contrasted to offer physicians a range of options. We think that a better knowledge of the mechanisms underlying HER3 in tumors and the advancement of targeted HER3 therapy will contribute to an improved prognosis for cancer patients and an increase in the efficacy of anticancer therapies.
Collapse
Affiliation(s)
- Leyi Gao
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Yu Zhang
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Mengna Feng
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Mengjia Shen
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Libo Yang
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Bing Wei
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Yongjie Zhou
- Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Zhang Zhang
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Yue H, Xu H, Ma L, Li X, Yang B, Wang X, Zeng Q, Li H, Zhang D, Geng M, Meng T, Xie Z. A DXd/TLR7-Agonist Dual-Conjugate Anti-HER2 ADC Exerts Robust Antitumor Activity Through Tumor Cell Killing and Immune Activation. Mol Cancer Ther 2024; 23:1639-1651. [PMID: 39082754 DOI: 10.1158/1535-7163.mct-24-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/05/2024] [Accepted: 07/26/2024] [Indexed: 11/05/2024]
Abstract
The emergence of trastuzumab deruxtecan (T-DXd), a new-generation antibody-drug conjugate (ADC), has profoundly altered the therapeutic paradigm for HER2-positive solid tumors, demonstrating remarkable clinical benefits. However, the combined outcomes of T-DXd with immunotherapy agents remain ambiguous. In this study, we introduce Tras-DXd-MTL1, an innovative HER2 targeting ADC that integrates the topoisomerase inhibitor DXd and a toll like receptor 7 (TLR7) agonist MTT5, linked to trastuzumab via a GGFG tetrapeptide linker. Mechanistically, Tras-DXd-MTL1 retains the DNA-damaging and cell-killing properties of topoisomerase inhibitors while simultaneously enhancing the immune response within the tumor microenvironment. This is achieved by promoting immune cell infiltration and activating dendritic cells and CD8+T cells via MTT5. In vivo evaluation of Tras-DXd-MTL1's antitumor potency revealed a notably superior performance compared with the T-DXd (Tras-DXd) or Tras-MTL1 in immunocompetent mice with trastuzumab-resistant EMT6-HER2 tumor and immunodeficient mice with JIMT-1 tumor. This improved efficacy is primarily attributed to its dual functions of immune stimulation and cytotoxicity. Our findings highlight the potential of incorporating immunostimulatory agents into ADC design to potentiate antitumor effects and establish durable immune memory, thereby reducing tumor recurrence risks. Therefore, our study offers a novel strategy for the design of immune-activating ADCs and provides a potential approach for targeting solid tumors with different levels of HER2 expression.
Collapse
Affiliation(s)
- Hangtian Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lanping Ma
- Division of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiyuan Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Biyu Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiyuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qingzhong Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Deqiang Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Tao Meng
- Division of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Bibbò S, Capone E, Lovato G, Ponziani S, Lamolinara A, Iezzi M, Lattanzio R, Mazzocco K, Morini M, Giansanti F, De Laurenzi V, Whitfield J, Iacobelli S, Ippoliti R, Beaulieu ME, Soucek L, Sala A, Sala G. EV20/Omomyc: A novel dual MYC/HER3 targeting immunoconjugate. J Control Release 2024; 374:171-180. [PMID: 39128771 DOI: 10.1016/j.jconrel.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
MYC is one of the most important therapeutic targets in human cancer. Many attempts have been made to develop small molecules that could be used to curb its activity in patients, but most failed to identify a suitable direct inhibitor. After years of preclinical characterization, a tissue-penetrating peptide MYC inhibitor, called Omomyc, has been recently successfully used in a Phase I dose escalation study in late-stage, all-comers solid tumour patients. The study showed drug safety and positive signs of clinical activity, prompting the beginning of a new Phase Ib combination study currently ongoing in metastatic pancreatic adenocarcinoma patients. In this manuscript, we have explored the possibility to improve Omomyc targeting to specific cancer subtypes by linking it to a therapeutic antibody. The new immunoconjugate, called EV20/Omomyc, was developed by linking a humanised anti-HER3 antibody, named EV20, to Omomyc using a bifunctional linker. EV20/Omomyc shows antigen-dependent penetrating activity and therapeutic efficacy in a metastatic model of neuroblastoma. This study suggests that directing Omomyc into specific cell types using antibodies recognising tumour antigens could improve its therapeutic activity in specific indications, like in the paediatric setting.
Collapse
Affiliation(s)
- Sandra Bibbò
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Emily Capone
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giulio Lovato
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Sara Ponziani
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, Italy
| | - Alessia Lamolinara
- Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, Italy; Department of Neurosciences, Imaging and Clinical Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Manuela Iezzi
- Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Department of Neurosciences, Imaging and Clinical Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Katia Mazzocco
- Laboratory of Experimental Therap ies in Oncology, IRCCS Istituto Giannina Gaslini
| | - Martina Morini
- Laboratory of Experimental Therap ies in Oncology, IRCCS Istituto Giannina Gaslini
| | - Francesco Giansanti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | | | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, Italy.
| | | | - Laura Soucek
- Peptomyc S.L., Barcelona 08035, Spain; Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Arturo Sala
- Centre for Inflammation Research and Translational Medicine (CIRTM); College, of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom,.
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
4
|
Zeng H, Wang W, Zhang L, Lin Z. HER3-targeted therapy: the mechanism of drug resistance and the development of anticancer drugs. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:14. [PMID: 38835349 PMCID: PMC11149107 DOI: 10.20517/cdr.2024.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 06/06/2024]
Abstract
Human epidermal growth factor receptor 3 (HER3), which is part of the HER family, is aberrantly expressed in various human cancers. Since HER3 only has weak tyrosine kinase activity, when HER3 ligand neuregulin 1 (NRG1) or neuregulin 2 (NRG2) appears, activated HER3 contributes to cancer development and drug resistance by forming heterodimers with other receptors, mainly including epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2). Inhibition of HER3 and its downstream signaling, including PI3K/AKT, MEK/MAPK, JAK/STAT, and Src kinase, is believed to be necessary to conquer drug resistance and improve treatment efficiency. Until now, despite multiple anti-HER3 antibodies undergoing preclinical and clinical studies, none of the HER3-targeted therapies are licensed for utilization in clinical cancer treatment because of their safety and efficacy. Therefore, the development of HER3-targeted drugs possessing safety, tolerability, and sensitivity is crucial for clinical cancer treatment. This review summarizes the progress of the mechanism of HER3 in drug resistance, the HER3-targeted therapies that are conducted in preclinical and clinical trials, and some emerging molecules that could be used as future designed drugs for HER3, aiming to provide insights for future research and development of anticancer drugs targeting HER3.
Collapse
Affiliation(s)
- Huilan Zeng
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Wei Wang
- Department of Cancer Center, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404000, China
| | - Lin Zhang
- Department of Gastroenterology, Chongqing University Jiangjin Hospital, Chongqing 402260, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
5
|
Capone E, Tryggvason T, Cela I, Dufrusine B, Pinti M, Del Pizzo F, Gunnarsdottir HS, Grottola T, De Laurenzi V, Iacobelli S, Lattanzio R, Sala G. HER-3 surface expression increases in advanced colorectal cancer representing a potential therapeutic target. Cell Death Discov 2023; 9:400. [PMID: 37898642 PMCID: PMC10613198 DOI: 10.1038/s41420-023-01692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
HER-3 (also known as ErbB-3) is a human epidermal growth factor receptor tyrosine kinases family member, and its expression in CRC (colorectal cancer) tissues was previously associated with poor prognosis. In this study, HER-3 expression was analyzed by immunohistochemistry in two cohorts of early and advanced metastatic CRC patients. The first cohort included 180 patients diagnosed with CRC in absence of lymph nodes or distant metastases (Stage I and Stage II), while the second was obtained from 53 advanced metastatic CRC patients who developed synchronous (SM) and metachronous (MM) liver metastases. In the first early-stage CRC cohort, 86 out of 180 (47.8%) tumors showed membranous expression of HER-3, with a mean percentage of positive tumor cells of 25.7%; conversely, in advanced metastatic CRC primary tumors, HER-3 was detected in all specimens, with a mean percentage of positive tumor cells of 76.1%. Kaplan-Meier curves showed that in the advanced metastatic CRC group, patients with HER-3high tumors had a significantly lower Cancer-Specific Survival (CSS) rate compared to patients with HER-3low tumors (p = 0.021). Importantly, this worse CSS rate was observed only in the MM subgroup of patients with HER-3high tumors (p = 0.002). Multivariate analysis confirmed that high HER-3 expression represents a significant and strong risk factor for death in patients developing MM liver metastases (Hazard Ratio = 64.9; 95% Confidence Interval, 4.7-886.6; p = 0.002). In addition, using a specific anti-HER-3 antibody-drug conjugate, named EV20/MMAF, we showed that HER-3 + CRC cells can be efficiently targeted in vitro and in vivo. Overall, this study confirms that surface HER-3 is highly expressed in CRC and reveals that HER-3 expression increases in metastatic CRC patients compared to early stage. Importantly, the results suggest that HER-3 has a prognostic and therapeutic value in patients developing MM liver metastases.
Collapse
Affiliation(s)
- Emily Capone
- Department of Innovative Technologies in Medicine & Dentistry, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Thordur Tryggvason
- Department of Pathology, Landspítali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Ilaria Cela
- Department of Innovative Technologies in Medicine & Dentistry, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Beatrice Dufrusine
- Center for Advanced Studies and Technology (CAST), University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Morena Pinti
- Department of Medical, Oral and Biotechnological Sciences, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Francesco Del Pizzo
- Center for Advanced Studies and Technology (CAST), University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Tommaso Grottola
- Surgical Oncology Unit, Casa di Cura Pierangeli, 65124, Pescara, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine & Dentistry, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine & Dentistry, University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy.
- Center for Advanced Studies and Technology (CAST), University "Gabriele d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
6
|
Weng W, Meng T, Pu J, Ma L, Shen Y, Wang Z, Pan R, Wang M, Chen C, Wang L, Zhang J, Zhou B, Shao S, Qian Y, Liu S, Hu W, Meng X. AMT-562, a Novel HER3-targeting Antibody-Drug Conjugate, Demonstrates a Potential to Broaden Therapeutic Opportunities for HER3-expressing Tumors. Mol Cancer Ther 2023; 22:1013-1027. [PMID: 37302522 PMCID: PMC10477830 DOI: 10.1158/1535-7163.mct-23-0198] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/06/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
HER3 is a unique member of the EGFR family of tyrosine kinases, which is broadly expressed in several cancers, including breast, lung, pancreatic, colorectal, gastric, prostate, and bladder cancers and is often associated with poor patient outcomes and therapeutic resistance. U3-1402/Patritumab-GGFG-DXd is the first successful HER3-targeting antibody-drug conjugate (ADC) with clinical efficacy in non-small cell lung cancer. However, over 60% of patients are nonresponsive to U3-1402 due to low target expression levels and responses tend to be in patients with higher target expression levels. U3-1402 is also ineffective in more challenging tumor types such as colorectal cancer. AMT-562 was generated by a novel anti-HER3 antibody Ab562 and a modified self-immolative PABC spacer (T800) to conjugate exatecan. Exatecan showed higher cytotoxic potency than its derivative DXd. Ab562 was selected because of its moderate affinity for minimizing potential toxicity and improving tumor penetration purposes. Both alone or in combination therapies, AMT-562 showed potent and durable antitumor response in low HER3 expression xenograft and heterogeneous patient-derived xenograft/organoid models, including digestive system and lung tumors representing of unmet needs. Combination therapies pairing AMT-562 with therapeutic antibodies, inhibitors of CHEK1, KRAS, and tyrosine kinase inhibitor showed higher synergistic efficacy than Patritumab-GGFG-DXd. Pharmacokinetic and safety profiles of AMT-562 were favorable and the highest dose lacking severe toxicity was 30 mg/kg in cynomolgus monkeys. AMT-562 has potential to be a superior HER3-targeting ADC with a higher therapeutic window that can overcome resistance to generate higher percentage and more durable responses in U3-1402-insensitive tumors.
Collapse
Affiliation(s)
- Weining Weng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Multitude Therapeutics, Shanghai, P.R. China
| | - Tao Meng
- MabCare Therapeutics, Shanghai, P.R. China
- HySlink Therapeutics, Shanghai, P.R. China
| | - Junyi Pu
- School of Life Sciences, Northwest University, Xi'an, Shaanxi, P.R. China
| | - Linjie Ma
- Multitude Therapeutics, Shanghai, P.R. China
| | - Yi Shen
- Multitude Therapeutics, Shanghai, P.R. China
| | | | - Rong Pan
- Abmart Inc, Shanghai, P.R. China
| | | | - Caiwei Chen
- Multitude Therapeutics, Shanghai, P.R. China
| | - Lijun Wang
- Multitude Therapeutics, Shanghai, P.R. China
| | | | - Biao Zhou
- Multitude Therapeutics, Shanghai, P.R. China
| | - Siyuan Shao
- Shanghai OneTar Biomedicine, Shanghai, P.R. China
| | - Yu Qian
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Shuhui Liu
- Multitude Therapeutics, Shanghai, P.R. China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xun Meng
- Multitude Therapeutics, Shanghai, P.R. China
- Abmart Inc, Shanghai, P.R. China
| |
Collapse
|
7
|
Larsen ME, Lyu H, Liu B. HER3-targeted therapeutic antibodies and antibody-drug conjugates in non-small cell lung cancer refractory to EGFR-tyrosine kinase inhibitors. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:11-17. [PMID: 39170873 PMCID: PMC11332908 DOI: 10.1016/j.pccm.2022.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/29/2022] [Accepted: 12/23/2022] [Indexed: 08/23/2024]
Abstract
Human epidermal growth factor receptor 3 (HER3) is a unique member of the human epidermal growth factor receptor (HER/EGFR) family, since it has negligible kinase activity. Therefore, HER3 must interact with a kinase-proficient receptor to form a heterodimer, leading to the activation of signaling cascades. Overexpression of HER3 is observed in various human cancers, including non-small cell lung cancer (NSCLC), and correlates with poor clinical outcomes in patients. Studies on the underlying mechanism demonstrate that HER3-initiated signaling promotes tumor metastasis and causes treatment failure in human cancers. Upregulation of HER3 is frequently observed in EGFR-mutant NSCLC treated with EGFR-tyrosine kinase inhibitors (TKIs). Increased expression of HER3 triggers the so-called EGFR-independent mechanism via interactions with other receptors to activate "bypass signaling pathways", thereby resulting in resistance to EGFR-TKIs. To date, no HER3-targeted therapy has been approved for cancer treatment. In both preclinical and clinical studies, targeting HER3 with a blocking antibody (Ab) is the only strategy being examined. Recent evaluations of an anti-HER3 Ab-drug conjugate (ADC) show promising results in patients with EGFR-TKI-resistant NSCLC. Herein, we summarize our understanding of the unique biology of HER3 in NSCLC refractory to EGFR-TKIs, with a focus on its dimerization partners and subsequent activation of signaling pathways. We also discuss the latest development of the therapeutic Abs and ADCs targeting HER3 to abrogate EGFR-TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Margaret E. Larsen
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA 70112, USA
| | - Hui Lyu
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA 70112, USA
| | - Bolin Liu
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
8
|
Gandullo-Sánchez L, Ocaña A, Pandiella A. HER3 in cancer: from the bench to the bedside. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:310. [PMID: 36271429 PMCID: PMC9585794 DOI: 10.1186/s13046-022-02515-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022]
Abstract
The HER3 protein, that belongs to the ErbB/HER receptor tyrosine kinase (RTK) family, is expressed in several types of tumors. That fact, together with the role of HER3 in promoting cell proliferation, implicate that targeting HER3 may have therapeutic relevance. Furthermore, expression and activation of HER3 has been linked to resistance to drugs that target other HER receptors such as agents that act on EGFR or HER2. In addition, HER3 has been associated to resistance to some chemotherapeutic drugs. Because of those circumstances, efforts to develop and test agents targeting HER3 have been carried out. Two types of agents targeting HER3 have been developed. The most abundant are antibodies or engineered antibody derivatives that specifically recognize the extracellular region of HER3. In addition, the use of aptamers specifically interacting with HER3, vaccines or HER3-targeting siRNAs have also been developed. Here we discuss the state of the art of the preclinical and clinical development of drugs aimed at targeting HER3 with therapeutic purposes.
Collapse
Affiliation(s)
- Lucía Gandullo-Sánchez
- grid.428472.f0000 0004 1794 2467Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Alberto Ocaña
- grid.411068.a0000 0001 0671 5785Hospital Clínico San Carlos and CIBERONC, 28040 Madrid, Spain
| | - Atanasio Pandiella
- grid.428472.f0000 0004 1794 2467Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
9
|
Goodman R, Johnson DB. Antibody-Drug Conjugates for Melanoma and Other Skin Malignancies. Curr Treat Options Oncol 2022; 23:1428-1442. [PMID: 36125618 DOI: 10.1007/s11864-022-01018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
OPINION STATEMENT While most skin malignancies are successfully treated with surgical excision, advanced and metastatic skin malignancies still often have poor long-term outcomes despite therapeutic advances. Antibody-drug conjugates (ADCs) serve as a potentially promising novel therapeutic approach to treat advanced skin cancers as they combine antibody-associated antigen specificity with cytotoxic anti-tumor effects, thereby maximizing efficacy and minimizing systemic toxicity. While no ADCs have gained regulatory approval for advanced skin cancers, several promising agents are undergoing preclinical and clinical investigation. In addition to identifying and validating skin cancer antigen targets, the key to maximizing therapeutic success is the careful development of each component of the ADC complex: antibodies, cytotoxic drugs, and linkers. It is the optimization of each of these components that will be integral in overcoming resistance, maximizing safety, and improving long-term clinical outcomes.
Collapse
Affiliation(s)
- Rachel Goodman
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Douglas B Johnson
- Department of Hematology/Oncology, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, 1161 21st Ave S, Nashville, TN, 37232, USA.
| |
Collapse
|
10
|
Malindi Z, Barth S, Abrahamse H. The Potential of Antibody Technology and Silver Nanoparticles for Enhancing Photodynamic Therapy for Melanoma. Biomedicines 2022; 10:2158. [PMID: 36140259 PMCID: PMC9495799 DOI: 10.3390/biomedicines10092158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Melanoma is highly aggressive and is known to be efficient at resisting drug-induced apoptotic signals. Resection is currently the gold standard for melanoma management, but it only offers local control of the early stage of the disease. Metastatic melanoma is prone to recurrence, and has a poor prognosis and treatment response. Thus, the need for advanced theranostic alternatives is evident. Photodynamic therapy has been increasingly studied for melanoma treatment; however, it relies on passive drug accumulation, leading to off-target effects. Nanoparticles enhance drug biodistribution, uptake and intra-tumoural concentration and can be functionalised with monoclonal antibodies that offer selective biorecognition. Antibody-drug conjugates reduce passive drug accumulation and off-target effects. Nonetheless, one limitation of monoclonal antibodies and antibody-drug conjugates is their lack of versatility, given cancer's heterogeneity. Monoclonal antibodies suffer several additional limitations that make recombinant antibody fragments more desirable. SNAP-tag is a modified version of the human DNA-repair enzyme, O6-alkylguanine-DNA alkyltransferase. It reacts in an autocatalytic and covalent manner with benzylguanine-modified substrates, providing a simple protein labelling system. SNAP-tag can be genetically fused with antibody fragments, creating fusion proteins that can be easily labelled with benzylguanine-modified payloads for site-directed delivery. This review aims to highlight the benefits and limitations of the abovementioned approaches and to outline how their combination could enhance photodynamic therapy for melanoma.
Collapse
Affiliation(s)
- Zaria Malindi
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, 55 Beit Street, Doornfontein, Johannesburg 2028, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road Observatory, Cape Town 7925, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, 55 Beit Street, Doornfontein, Johannesburg 2028, South Africa
| |
Collapse
|
11
|
Conlon PR, Gurijala VR, Kaufman M, Li D, Li J, Li Y, Yin M, Reddy BS, Wagler T, Wang Z, Xu Z, Yurkovetskiy AV, Zhu L. Process Development and GMP Production of a Conjugate Warhead: Auristatin F-HPA-Ala/TFA (XMT-1864/TFA). Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick R. Conlon
- Former Mersana Therapeutics, Inc., 840 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Venu Reddy Gurijala
- Drug Substance Development, Mersana Therapeutics, Inc., 840 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Michael Kaufman
- Former Mersana Therapeutics, Inc., 840 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Dachang Li
- Chemical Macromolecule Division, Asymchem Life Science (Tianjin) Co., Ltd. No. 71, Seventh Avenue, TEDA Tianjin 300457, P.R. China
| | - Jiuyuan Li
- Chemical Macromolecule Division, Asymchem Life Science (Tianjin) Co., Ltd. No. 71, Seventh Avenue, TEDA Tianjin 300457, P.R. China
| | - Yuanyuan Li
- Drug Substance Development, Mersana Therapeutics, Inc., 840 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Mao Yin
- Former Mersana Therapeutics, Inc., 840 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Bollu Satyanarayan Reddy
- Drug Substance Development, Mersana Therapeutics, Inc., 840 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Thomas Wagler
- Drug Substance Development, Mersana Therapeutics, Inc., 840 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Zedong Wang
- Chemical Macromolecule Division, Asymchem Life Science (Tianjin) Co., Ltd. No. 71, Seventh Avenue, TEDA Tianjin 300457, P.R. China
| | - Zhongmin Xu
- Chemdiscover, 10 Carlton Circle, Princeton, New Jersey 08540, United States
| | - Aleksandr V. Yurkovetskiy
- Former Mersana Therapeutics, Inc., 840 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Lei Zhu
- Drug Substance Development, Mersana Therapeutics, Inc., 840 Memorial Drive, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Antibody–Drug Conjugates as an Emerging Therapy in Oncodermatology. Cancers (Basel) 2022; 14:cancers14030778. [PMID: 35159045 PMCID: PMC8833781 DOI: 10.3390/cancers14030778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Currently, the therapeutic arsenal to fight cancers is extensive. Among these, antibody–drug conjugates (ADCs) consist in an antibody linked to a cytotoxic agent, allowing a specific delivery to tumor cells. ADCs are an emerging class of therapeutics, with twelve FDA- and EMA-approved drugs for hematological and solid cancers. In recent years, tremendous progress has been observed in therapeutic approaches for advanced skin cancer patients. ADCs appear as an emerging therapeutic option in oncodermatology. After providing an overview of ADC design and development, the goal of this article is to review the potential ADC indications in the field of oncodermatology. Abstract Antibody–drug conjugates (ADCs) are an emerging class of therapeutics, with twelve FDA- and EMA-approved drugs for hematological and solid cancers. Such drugs consist in a monoclonal antibody linked to a cytotoxic agent, allowing a specific cytotoxicity to tumor cells. In recent years, tremendous progress has been observed in therapeutic approaches for advanced skin cancer patients. In this regard, targeted therapies (e.g., kinase inhibitors) or immune checkpoint-blocking antibodies outperformed conventional chemotherapy, with proven benefit to survival. Nevertheless, primary and acquired resistances as well as adverse events remain limitations of these therapies. Therefore, ADCs appear as an emerging therapeutic option in oncodermatology. After providing an overview of ADC design and development, the goal of this article is to review the potential ADC indications in the field of oncodermatology.
Collapse
|
13
|
Díaz-Rodríguez E, Gandullo-Sánchez L, Ocaña A, Pandiella A. Novel ADCs and Strategies to Overcome Resistance to Anti-HER2 ADCs. Cancers (Basel) 2021; 14:154. [PMID: 35008318 PMCID: PMC8750930 DOI: 10.3390/cancers14010154] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/23/2022] Open
Abstract
During recent years, a number of new compounds against HER2 have reached clinics, improving the prognosis and quality of life of HER2-positive breast cancer patients. Nonetheless, resistance to standard-of-care drugs has motivated the development of novel agents, such as new antibody-drug conjugates (ADCs). The latter are a group of drugs that benefit from the potency of cytotoxic agents whose action is specifically guided to the tumor by the target-specific antibody. Two anti-HER2 ADCs have reached the clinic: trastuzumab-emtansine and, more recently, trastuzumab-deruxtecan. In addition, several other HER2-targeted ADCs are in preclinical or clinical development, some of them with promising signs of activity. In the present review, the structure, mechanism of action, and potential resistance to all these ADCs will be described. Specific attention will be given to discussing novel strategies to circumvent resistance to ADCs.
Collapse
Affiliation(s)
- Elena Díaz-Rodríguez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-IBSAL and CIBERONC, 37007 Salamanca, Spain; (E.D.-R.); (L.G.-S.)
- Departamento de Bioquímica y Biología Molecular, University of Salamanca, 37007 Salamanca, Spain
| | - Lucía Gandullo-Sánchez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-IBSAL and CIBERONC, 37007 Salamanca, Spain; (E.D.-R.); (L.G.-S.)
| | - Alberto Ocaña
- Hospital Clínico San Carlos, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), 28040 Madrid, Spain;
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-IBSAL and CIBERONC, 37007 Salamanca, Spain; (E.D.-R.); (L.G.-S.)
| |
Collapse
|
14
|
Capone E, Lattanzio R, Gasparri F, Orsini P, Rossi C, Iacobelli V, De Laurenzi V, Natali PG, Valsasina B, Iacobelli S, Sala G. EV20/NMS-P945, a Novel Thienoindole Based Antibody-Drug Conjugate Targeting HER-3 for Solid Tumors. Pharmaceutics 2021; 13:pharmaceutics13040483. [PMID: 33918158 PMCID: PMC8066800 DOI: 10.3390/pharmaceutics13040483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
HER-3 is becoming an attractive target for antibody-drug conjugate (ADC)-based therapy. Indeed, this receptor and its ligands are found to be overexpressed in several malignancies, and re-activation of its downstream signaling axis is known to play a critical role in modulating the sensitivity of targeted therapeutics in different tumors. In this study, we generated a novel ADC named EV20/NMS-P945 by coupling the anti-HER-3 antibody EV20 with a duocarmycin-like derivative, the thienoindole (TEI) NMS-P528, a DNA minor groove alkylating agent through a peptidic cleavable linker. This ADC showed target-dependent cytotoxic activity in vitro on several tumor cell lines and therapeutic activity in mouse xenograft tumor models, including those originating from pancreatic, prostatic, head and neck, gastric and ovarian cancer cells and melanoma. Pharmacokinetics and toxicological studies in monkeys demonstrated that this ADC possesses a favorable terminal half-life and stability and it is well tolerated. These data support further EV20/NMS-P945 clinical development as a therapeutic agent against HER-3-expressing malignancies.
Collapse
Affiliation(s)
- Emily Capone
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (E.C.); (R.L.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), Via Polacchi 11, 66100 Chieti, Italy;
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (E.C.); (R.L.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), Via Polacchi 11, 66100 Chieti, Italy;
| | - Fabio Gasparri
- Nerviano Medical Sciences Srl, 20014 Milan, Italy; (F.G.); (P.O.); (B.V.)
| | - Paolo Orsini
- Nerviano Medical Sciences Srl, 20014 Milan, Italy; (F.G.); (P.O.); (B.V.)
| | - Cosmo Rossi
- Center for Advanced Studies and Technology (CAST), Via Polacchi 11, 66100 Chieti, Italy;
| | - Valentina Iacobelli
- Department of Gynecology and Obstetrics, Catholic University, 00168 Rome, Italy;
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (E.C.); (R.L.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), Via Polacchi 11, 66100 Chieti, Italy;
| | | | - Barbara Valsasina
- Nerviano Medical Sciences Srl, 20014 Milan, Italy; (F.G.); (P.O.); (B.V.)
| | - Stefano Iacobelli
- MediaPharma s.r.l., Via della Colonnetta 50/A, 66100 Chieti, Italy;
- Correspondence: or (S.I.); (G.S.); Tel.: +39-08-7154-1504 (G.S.)
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (E.C.); (R.L.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), Via Polacchi 11, 66100 Chieti, Italy;
- Correspondence: or (S.I.); (G.S.); Tel.: +39-08-7154-1504 (G.S.)
| |
Collapse
|
15
|
Haikala HM, Jänne PA. Thirty Years of HER3: From Basic Biology to Therapeutic Interventions. Clin Cancer Res 2021; 27:3528-3539. [PMID: 33608318 DOI: 10.1158/1078-0432.ccr-20-4465] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/13/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
HER3 is a pseudokinase member of the EGFR family having a role in both tumor progression and drug resistance. Although HER3 was discovered more than 30 years ago, no therapeutic interventions have reached clinical approval to date. Because the evidence of the importance of HER3 is accumulating, increased amounts of preclinical and clinical trials with HER3-targeting agents are emerging. In this review article, we discuss the most recent HER3 biology in tumorigenic events and drug resistance and provide an overview of the current and emerging strategies to target HER3.
Collapse
Affiliation(s)
- Heidi M Haikala
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Targeting Vesicular LGALS3BP by an Antibody-Drug Conjugate as Novel Therapeutic Strategy for Neuroblastoma. Cancers (Basel) 2020; 12:cancers12102989. [PMID: 33076448 PMCID: PMC7650653 DOI: 10.3390/cancers12102989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Antibody Drug Conjugates are an emerging class of biopharmaceuticals that have seen an impressive increase of attention in the field of cancer therapy. Here, we describe the therapeutic activity of 1959-sss/DM3, a non-internalizing ADC targeting LGALS3BP, a secreted, extracellular vesicles-associated protein expressed by the majority of human cancers, including neuroblastoma. We show that 1959-sss/DM3 treatment can cure mice with established neuroblastoma tumours in pseudometastatic, orthotopic and Patient Derived Xenograft models. Abstract Neuroblastoma is the most common extra-cranial solid tumor in infants and children, which accounts for approximately 15% of all cancer-related deaths in the pediatric population. New therapeutic modalities are urgently needed. Antibody-Drug Conjugates (ADC)s-based therapy has been proposed as potential strategy to treat this pediatric malignancy. LGALS3BP is a highly glycosylated protein involved in tumor growth and progression. Studies have shown that LGALS3BP is enriched in extracellular vesicles (EV)s derived by most neuroblastoma cells, where it plays a critical role in preparing a favorable tumor microenvironment (TME) through direct cross talk between cancer and stroma cells. Here, we describe the development of a non-internalizing LGALS3BP ADC, named 1959-sss/DM3, which selectively targets LGALS3BP expressing neuroblastoma. 1959-sss/DM3 mediated potent therapeutic activity in different types of neuroblastoma models. Notably, we found that treatments were well tolerated at efficacious doses that were fully curative. These results offer preclinical proof-of-concept for an ADC targeting exosomal LGALS3BP approach for neuroblastomas.
Collapse
|
17
|
Antibody-Based Immunotherapy: Alternative Approaches for the Treatment of Metastatic Melanoma. Biomedicines 2020; 8:biomedicines8090327. [PMID: 32899183 PMCID: PMC7555584 DOI: 10.3390/biomedicines8090327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Melanoma is the least common form of skin cancer and is associated with the highest mortality. Where melanoma is mostly unresponsive to conventional therapies (e.g., chemotherapy), BRAF inhibitor treatment has shown improved therapeutic outcomes. Photodynamic therapy (PDT) relies on a light-activated compound to produce death-inducing amounts of reactive oxygen species (ROS). Their capacity to selectively accumulate in tumor cells has been confirmed in melanoma treatment with some encouraging results. However, this treatment approach has not reached clinical fruition for melanoma due to major limitations associated with the development of resistance and subsequent side effects. These adverse effects might be bypassed by immunotherapy in the form of antibody–drug conjugates (ADCs) relying on the ability of monoclonal antibodies (mAbs) to target specific tumor-associated antigens (TAAs) and to be used as carriers to specifically deliver cytotoxic warheads into corresponding tumor cells. Of late, the continued refinement of ADC therapeutic efficacy has given rise to photoimmunotherapy (PIT) (a light-sensitive compound conjugated to mAbs), which by virtue of requiring light activation only exerts its toxic effect on light-irradiated cells. As such, this review aims to highlight the potential clinical benefits of various armed antibody-based immunotherapies, including PDT, as alternative approaches for the treatment of metastatic melanoma.
Collapse
|
18
|
Antibody-Drug Conjugates: The New Frontier of Chemotherapy. Int J Mol Sci 2020; 21:ijms21155510. [PMID: 32752132 PMCID: PMC7432430 DOI: 10.3390/ijms21155510] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, antibody-drug conjugates (ADCs) have become promising antitumor agents to be used as one of the tools in personalized cancer medicine. ADCs are comprised of a drug with cytotoxic activity cross-linked to a monoclonal antibody, targeting antigens expressed at higher levels on tumor cells than on normal cells. By providing a selective targeting mechanism for cytotoxic drugs, ADCs improve the therapeutic index in clinical practice. In this review, the chemistry of ADC linker conjugation together with strategies adopted to improve antibody tolerability (by reducing antigenicity) are examined, with particular attention to ADCs approved by the regulatory agencies (the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA)) for treating cancer patients. Recent developments in engineering Immunoglobulin (Ig) genes and antibody humanization have greatly reduced some of the problems of the first generation of ADCs, beset by problems, such as random coupling of the payload and immunogenicity of the antibody. ADC development and clinical use is a fast, evolving area, and will likely prove an important modality for the treatment of cancer in the near future.
Collapse
|
19
|
Gandullo-Sánchez L, Capone E, Ocaña A, Iacobelli S, Sala G, Pandiella A. HER3 targeting with an antibody-drug conjugate bypasses resistance to anti-HER2 therapies. EMBO Mol Med 2020; 12:e11498. [PMID: 32329582 PMCID: PMC7207167 DOI: 10.15252/emmm.201911498] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/24/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023] Open
Abstract
Despite impressive clinical benefit obtained with anti‐HER2‐targeted therapies, in advances stages, especially in the metastatic setting, HER2‐positive tumors remain incurable. Therefore, it is important to develop novel strategies to fight these tumors, especially when they become resistant to available therapies. We show here that the anti‐HER3 antibody–drug conjugate EV20/MMAF exerted potent anti‐tumoral properties against several models of primary resistance and secondary resistance to common anti‐HER2 available therapies, including trastuzumab, lapatinib, neratinib, and trastuzumab‐emtansine. HER3 was expressed in these HER2+ breast cancer cells and knockdown experiments demonstrated that HER3 expression was required for the action of EV20/MMAF. In mice injected with trastuzumab‐resistant HER2+ cells, a single dose of EV20/MMAF caused complete and long‐lasting tumor regression. Mechanistically, EV20/MMAF bound to cell surface HER3 and became internalized to the lysosomes. Treatment with EV20/MMAF caused cell cycle arrest in mitosis and promoted cell death through mitotic catastrophe. These findings encourage the clinical testing of EV20/MMAF for several indications in the HER2+ cancer clinic, including situations in which HER2+ tumors become refractory to approved anti‐HER2 therapies.
Collapse
Affiliation(s)
- Lucía Gandullo-Sánchez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Salamanca, Spain
| | - Emily Capone
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studiesand Technology (CAST), University of Chieti-Pescara, Chieti, Italy
| | | | | | - Gianluca Sala
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studiesand Technology (CAST), University of Chieti-Pescara, Chieti, Italy.,MediaPharma s.r.l, Chieti, Italy
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Salamanca, Spain
| |
Collapse
|
20
|
Yang Y, Ma S, Ye Z, Zhou X. MCM7 silencing promotes cutaneous melanoma cell autophagy and apoptosis by inactivating the AKT1/mTOR signaling pathway. J Cell Biochem 2020; 121:1283-1294. [PMID: 31535400 DOI: 10.1002/jcb.29361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/20/2019] [Indexed: 01/17/2023]
Abstract
Cutaneous melanoma (CM) has become a major public health concern. Studies illustrate that minichromosome maintenance protein 7 (MCM7) participate in various diseases including skin disease. Our study aimed to study the effects of MCM7 silencing on CM cell autophagy and apoptosis by modulating the AKT threonine kinase 1 (AKT1)/mechanistic target of rapamycin kinase (mTOR) signaling pathway. Initially, microarray analysis was used to screen the CM-related gene expression data as well as differentially expressed genes. Subsequently, MCM7 expression vector and lentivirus RNA used for MCM7 silencing (LV-shRNA-MCM7) were constructed, and these vectors, dimethyl sulfoxide (DMSO) and AKT activator SC79 were then introduced into CM cell line SK-MEL-2 to validate the role of MCM7 in cell autophagy, viability, apoptosis, cell cycle, migration, and invasion. To further investigate the regulatory mechanisms of MCM7 in CM progress, the expression of MCM7, AKT1, mTOR, cyclin D1, as well as autophagy and apoptosis relative factors, such as LC3B, SOD2, DJ-1, p62, Bcl-2, Bax, and caspase-3 in melanoma cells was determined. MCM7 might mediate the AKT1/mTOR signaling pathway to influence the progress of melanoma. MCM7 silencing contributed to the increased expression of Bax, capase-3, and autophagy-related genes (LC3B, SOD2, and DJ-1), but decreased the expression of Bcl-2, which suggested that MCM7 silencing promoted autophagy and cell apoptosis. At the same time, MCM7 silencing also attenuated cell viability, invasion, and migration, and reduced the cyclin D1 expression and protein levels of p-AKT1 and p-mTOR. Taken together, MCM7 silencing inhibited CM via inactivation of the AKT1/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yemei Yang
- Department of Dermatology and Venerology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Shengfang Ma
- Department of Dermatology, Baoshihua Hospital of Gansu Province, Lanzhou, China
| | - Zi Ye
- College of Information and Sciences, The Pennsylvania State University, Pennsylvania
| | - Xianyi Zhou
- Department of Dermatology and Venerology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Koganemaru S, Kuboki Y, Koga Y, Kojima T, Yamauchi M, Maeda N, Kagari T, Hirotani K, Yasunaga M, Matsumura Y, Doi T. U3-1402, a Novel HER3-Targeting Antibody-Drug Conjugate, for the Treatment of Colorectal Cancer. Mol Cancer Ther 2019; 18:2043-2050. [PMID: 31395690 DOI: 10.1158/1535-7163.mct-19-0452] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/28/2019] [Accepted: 08/02/2019] [Indexed: 12/09/2022]
Abstract
HER3 is overexpressed in several cancers, including colorectal cancer. Although therapies with anti-HER3 antibodies have been investigated, significant clinical benefits have not been reported. U3-1402 is a novel HER3-antibody-drug conjugate (ADC) composed of the HER3 antibody patritumab and a novel topoisomerase I inhibitor, DX-8951 derivative (DXd). The sensitivity of DXd was evaluated by a growth inhibition assay. The antitumor activity of U3-1402 was evaluated in a murine xenograft model in which its effects on cells, with a range of HER3 expression levels, were compared with those of patritumab alone, irinotecan, control-ADC, and saline. In the growth inhibition assay, all colorectal cancer cell lines were sensitive to DXd. In the tumor xenograft model, significant tumor regression with U3-1402 was observed both in the DiFi cell line (high HER3 expression; KRAS wild type) and in SW620 (high HER3 expression; KRAS mutation), but no treatment effect was observed in Colo320DM (low HER3 expression). Notably, SW620 tumor growth was significantly suppressed with U3-1402 compared with the saline-treated group (P < 0.001) and showed greater activity compared with the irinotecan group. By contrast, patritumab alone, control-ADC, and saline did not significantly differ in tumor growth inhibition. The antitumor activity of U3-1402 was dependent on HER3 expression level, but not on KRAS mutation status. These results support further investigation of development strategies for U3-1402 in patients with HER3-expressing colorectal cancer.
Collapse
Affiliation(s)
- Shigehiro Koganemaru
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan.,Medical Science Program, Graduate School of Medicine, Keio University, Tokyo, Japan
| | - Yasutoshi Kuboki
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan.
| | - Yoshikatsu Koga
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takashi Kojima
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Mayumi Yamauchi
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Naoyuki Maeda
- Biomarker Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Takashi Kagari
- Oncology Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Kenji Hirotani
- Oncology Clinical Development Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yasuhiro Matsumura
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Toshihiko Doi
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
22
|
Black LE, Longo JF, Carroll SL. Mechanisms of Receptor Tyrosine-Protein Kinase ErbB-3 (ERBB3) Action in Human Neoplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1898-1912. [PMID: 31351986 DOI: 10.1016/j.ajpath.2019.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/16/2022]
Abstract
It is well established that the epidermal growth factor (EGF) receptor, receptor tyrosine-protein kinase erbB-2 (ERBB2)/human EGF receptor 2 (HER2), and, to a lesser extent, ERBB4/HER4, promote the pathogenesis of many types of human cancers. In contrast, the role that ERBB3/HER3, the fourth member of the ERBB family of receptor tyrosine kinases, plays in these diseases is poorly understood and, until recently, underappreciated. In large part, this was because early structural and functional studies suggested that ERBB3 had little, if any, intrinsic tyrosine kinase activity and, thus, was unlikely to be an important therapeutic target. Since then, however, numerous publications have demonstrated an important role for ERBB3 in carcinogenesis, metastasis, and acquired drug resistance. Furthermore, somatic ERBB3 mutations are frequently encountered in many types of human cancers. Dysregulation of ERBB3 trafficking as well as cooperation with other receptor tyrosine kinases further enhance ERBB3's role in tumorigenesis and drug resistance. As a result of these advances in our understanding of the structure and biochemistry of ERBB3, and a growing focus on the development of precision and combinatorial therapeutic regimens, ERBB3 is increasingly considered to be an important therapeutic target in human cancers. In this review, we discuss the unique structural and functional features of ERBB3 and how this information is being used to develop effective new therapeutic agents that target ERBB3 in human cancers.
Collapse
Affiliation(s)
- Laurel E Black
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Jody F Longo
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
23
|
Bourillon L, Bourgier C, Gaborit N, Garambois V, Llès E, Zampieri A, Ogier C, Jarlier M, Radosevic-Robin N, Orsetti B, Delpech H, Theillet C, Colombo PE, Azria D, Pèlegrin A, Larbouret C, Chardès T. An auristatin-based antibody-drug conjugate targeting HER3 enhances the radiation response in pancreatic cancer. Int J Cancer 2019; 145:1838-1851. [PMID: 30882895 DOI: 10.1002/ijc.32273] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer characterized by poor response to chemotherapy and radiotherapy due to the lack of efficient therapeutic tools and early diagnostic markers. We previously generated the nonligand competing anti-HER3 antibody 9F7-F11 that binds to pancreatic tumor cells and induces tumor regression in vivo in experimental models. Here, we asked whether coupling 9F7-F11 with a radiosensitizer, such as monomethylauristatin E (MMAE), by using the antibody-drug conjugate (ADC) technology could improve radiation therapy efficacy in PDAC. We found that the MMAE-based HER3 antibody-drug conjugate (HER3-ADC) was efficiently internalized in tumor cells, increased the fraction of cells arrested in G2/M, which is the most radiosensitive phase of the cell cycle, and promoted programmed cell death of irradiated HER3-positive pancreatic cancer cells (BxPC3 and HPAC cell lines). HER3-ADC decreased the clonogenic survival of irradiated cells by increasing DNA double-strand break formation (based on γH2AX level), and by modulating DNA damage repair. Tumor radiosensitization with HER3-ADC favored the inhibition of the AKT-induced survival pathway, together with more efficient caspase 3/PARP-mediated apoptosis. Incubation with HER3-ADC before irradiation synergistically reduced the phosphorylation of STAT3, which is involved in chemoradiation resistance. In vivo, the combination of HER3-ADC with radiation therapy increased the overall survival of mice harboring BxPC3, HPAC cell xenografts or patient-derived xenografts, and reduced proliferation (KI67-positive cells). Combining auristatin radiosensitizer delivery via an HER3-ADC with radiotherapy is a new promising therapeutic strategy in PDAC.
Collapse
Affiliation(s)
- Laura Bourillon
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Céline Bourgier
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France.,Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Nadège Gaborit
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Véronique Garambois
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Eva Llès
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Alexandre Zampieri
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Charline Ogier
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Marta Jarlier
- Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Nina Radosevic-Robin
- Department of Biopathology, Jean Perrin Comprehensive Cancer Center and INSERM/UCA UMR 1240, 63011, Clermont-Ferrand, France
| | - Béatrice Orsetti
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Hélène Delpech
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Charles Theillet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Pierre-Emmanuel Colombo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France.,Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - David Azria
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France.,Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - André Pèlegrin
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Christel Larbouret
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France
| | - Thierry Chardès
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298, Montpellier, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
24
|
Mishra R, Patel H, Alanazi S, Yuan L, Garrett JT. HER3 signaling and targeted therapy in cancer. Oncol Rev 2018; 12:355. [PMID: 30057690 PMCID: PMC6047885 DOI: 10.4081/oncol.2018.355] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022] Open
Abstract
ERBB family members including epidermal growth factor receptor (EGFR) also known as HER1, ERBB2/HER2/Neu, ERBB3/HER3 and ERBB4/HER4 are aberrantly activated in multiple cancers and hence serve as drug targets and biomarkers in modern precision therapy. The therapeutic potential of HER3 has long been underappreciated, due to impaired kinase activity and relatively low expression in tumors. However, HER3 has received attention in recent years as it is a crucial heterodimeric partner for other EGFR family members and has the potential to regulate EGFR/HER2-mediated resistance. Upregulation of HER3 is associated with several malignancies where it fosters tumor progression via interaction with different receptor tyrosine kinases (RTKs). Studies also implicate HER3 contributing significantly to treatment failure, mostly through the activation of PI3K/AKT, MAPK/ERK and JAK/STAT pathways. Moreover, activating mutations in HER3 have highlighted the role of HER3 as a direct therapeutic target. Therapeutic targeting of HER3 includes abrogating its dimerization partners’ kinase activity using small molecule inhibitors (lapatinib, erlotinib, gefitinib, afatinib, neratinib) or direct targeting of its extracellular domain. In this review, we focus on HER3-mediated signaling, its role in drug resistance and discuss the latest advances to overcome resistance by targeting HER3 using mono- and bispecific antibodies and small molecule inhibitors.
Collapse
Affiliation(s)
- Rosalin Mishra
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Hima Patel
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Samar Alanazi
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Long Yuan
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Joan T Garrett
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|