1
|
Lund PM, Kristensen K, Larsen NW, Knuhtsen A, Hansen MB, Hjørringgaard CU, Eriksen AZ, Urquhart AJ, Mortensen KI, Simonsen JB, Andresen TL, Larsen JB. Tuning the double lipidation of salmon calcitonin to introduce a pore-like membrane translocation mechanism. J Colloid Interface Sci 2024; 669:198-210. [PMID: 38713958 DOI: 10.1016/j.jcis.2024.04.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 05/09/2024]
Abstract
A widespread strategy to increase the transport of therapeutic peptides across cellular membranes has been to attach lipid moieties to the peptide backbone (lipidation) to enhance their intrinsic membrane interaction. Efforts in vitro and in vivo investigating the correlation between lipidation characteristics and peptide membrane translocation efficiency have traditionally relied on end-point read-out assays and trial-and-error-based optimization strategies. Consequently, the molecular details of how therapeutic peptide lipidation affects it's membrane permeation and translocation mechanisms remain unresolved. Here we employed salmon calcitonin as a model therapeutic peptide and synthesized nine double lipidated analogs with varying lipid chain lengths. We used single giant unilamellar vesicle (GUV) calcein influx time-lapse fluorescence microscopy to determine how tuning the lipidation length can lead to an All-or-None GUV filling mechanism, indicative of a peptide mediated pore formation. Finally, we used a GUVs-containing-inner-GUVs assay to demonstrate that only peptide analogs capable of inducing pore formation show efficient membrane translocation. Our data provided the first mechanistic details on how therapeutic peptide lipidation affects their membrane perturbation mechanism and demonstrated that fine-tuning lipidation parameters could induce an intrinsic pore-forming capability. These insights and the microscopy based workflow introduced for investigating structure-function relations could be pivotal for optimizing future peptide design strategies.
Collapse
Affiliation(s)
- Philip M Lund
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kasper Kristensen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nanna W Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Astrid Knuhtsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Morten B Hansen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Claudia U Hjørringgaard
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anne Z Eriksen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Andrew J Urquhart
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kim I Mortensen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jens B Simonsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thomas L Andresen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Jannik B Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Lyngby, Denmark; DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Taverner A, Almansour K, Gridley K, Marques ARL, MacKay J, Eggleston IM, Mrsny RJ. Structure-function analysis of tight junction-directed permeation enhancer PIP250. J Control Release 2023; 364:S0168-3659(23)00705-8. [PMID: 39491173 DOI: 10.1016/j.jconrel.2023.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
The intestinal paracellular route of absorption is modulated via tight junction (TJ) structures located at the apical neck of polarized intestinal epithelial cells to restrict solute movement through the intercellular space between them. Tight junctions open or close in response to changes in the phosphorylation status of light chain (MLC) at position Ser-19. This phosphorylation event is primarily controlled by MLC kinase (MLCK) and MLC phosphatase (MLCP), the latter being a holoenzyme that involves interaction between protein phosphatase 1 (PP1) and myosin targeting protein 1 (MYPT1). An entirely D-amino acid Permeant Inhibitor of Phosphatase (PIP) peptide sequence designed to disrupt PP1-MYPT1 interactions at the cytoplasmic surface of TJs, PIP250 (rrfkvktkkrk) localized at intracellular TJ structures, altered expression levels of specific TJ proteins, increased cellular phosphorylated MLC (pMLC) levels, binding to PP1, decreased epithelial barrier function, and significantly increased systemic uptake of the poorly absorbed antibiotic gentamicin in vivo. A series of PIP250 peptide analogues showed that positions phe3 and val5 were critical to its functional properties, with some providing opportunities to tune the dynamic actions of its TJ modulation properties. These data confirm the activity of PIP250 as a rationally designed oral permeation enhancer and validated key amino acids involved in its interaction with PP1 that define its overall actions; the magnitude and duration of these enhancing properties were associated with the MYPT1-mimetic properties of the PIP250 peptide analogues described.
Collapse
Affiliation(s)
- Alistair Taverner
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Khaled Almansour
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Ha'il 55473, Saudi Arabia
| | - Kate Gridley
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Ana Rita Lima Marques
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Julia MacKay
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Ian M Eggleston
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Randall J Mrsny
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
3
|
Ramirez-Velez I, Belardi B. Storming the gate: New approaches for targeting the dynamic tight junction for improved drug delivery. Adv Drug Deliv Rev 2023; 199:114905. [PMID: 37271282 PMCID: PMC10999255 DOI: 10.1016/j.addr.2023.114905] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
As biologics used in the clinic outpace the number of new small molecule drugs, an important challenge for their efficacy and widespread use has emerged, namely tissue penetrance. Macromolecular drugs - bulky, high-molecular weight, hydrophilic agents - exhibit low permeability across biological barriers. Epithelial and endothelial layers, for example within the gastrointestinal tract or at the blood-brain barrier, present the most significant obstacle to drug transport. Within epithelium, two subcellular structures are responsible for limiting absorption: cell membranes and intercellular tight junctions. Previously considered impenetrable to macromolecular drugs, tight junctions control paracellular flux and dictate drug transport between cells. Recent work, however, has shown tight junctions to be dynamic, anisotropic structures that can be targeted for delivery. This review aims to summarize new approaches for targeting tight junctions, both directly and indirectly, and to highlight how manipulation of tight junction interactions may help usher in a new era of precision drug delivery.
Collapse
Affiliation(s)
- Isabela Ramirez-Velez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
4
|
Gastrointestinal Permeation Enhancers for the Development of Oral Peptide Pharmaceuticals. Pharmaceuticals (Basel) 2022; 15:ph15121585. [PMID: 36559036 PMCID: PMC9781085 DOI: 10.3390/ph15121585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Recently, two oral-administered peptide pharmaceuticals, semaglutide and octreotide, have been developed and are considered as a breakthrough in peptide and protein drug delivery system development. In 2019, the Food and Drug Administration (FDA) approved an oral dosage form of semaglutide developed by Novo Nordisk (Rybelsus®) for the treatment of type 2 diabetes. Subsequently, the octreotide capsule (Mycapssa®), developed through Chiasma's Transient Permeation Enhancer (TPE) technology, also received FDA approval in 2020 for the treatment of acromegaly. These two oral peptide products have been a significant success; however, a major obstacle to their oral delivery remains the poor permeability of peptides through the intestinal epithelium. Therefore, gastrointestinal permeation enhancers are of great relevance for the development of subsequent oral peptide products. Sodium salcaprozate (SNAC) and sodium caprylate (C8) have been used as gastrointestinal permeation enhancers for semaglutide and octreotide, respectively. Herein, we briefly review two approved products, Rybelsus® and Mycapssa®, and discuss the permeation properties of SNAC and medium chain fatty acids, sodium caprate (C10) and C8, focusing on Eligen technology using SNAC, TPE technology using C8, and gastrointestinal permeation enhancement technology (GIPET) using C10.
Collapse
|
5
|
Klepach A, Tran H, Ahmad Mohammed F, ElSayed ME. Characterization and impact of peptide physicochemical properties on oral and subcutaneous delivery. Adv Drug Deliv Rev 2022; 186:114322. [PMID: 35526665 DOI: 10.1016/j.addr.2022.114322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/21/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
Peptides, an emerging modality within the biopharmaceutical industry, are often delivered subcutaneously with evolving prospects on oral delivery. Barrier biology within the subcutis or gastrointestinal tract is a significant challenge in limiting absorption or otherwise disrupting peptide disposition. Aspects of peptide pharmacokinetic performance and ADME can be mitigated with careful molecular design that tailors for properties such as effective size, hydrophobicity, net charge, proteolytic stability, and albumin binding. In this review, we endeavor to highlight effective techniques in qualifying physicochemical properties of peptides and discuss advancements of in vitro models of subcutaneous and oral delivery. Additionally, we will delineate empirical findings around the relationship of these physicochemical properties and in vivo (animal or human) impact. We conclude that robust peptide characterization methods and in vitro techniques with demonstrated correlations to in vivo data are key routines to incorporate in the drug discovery and development to improve the probability of technical and commercial success of peptide therapeutics.
Collapse
|
6
|
Zhang JY, Liu XX, Lin JY, Bao XY, Peng JQ, Gong ZP, Luan X, Chen Y. Biomimetic engineered nanocarriers inspired by viruses for oral-drug delivery. Int J Pharm 2022; 624:121979. [DOI: 10.1016/j.ijpharm.2022.121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
|
7
|
Tran H, ElSayed MEH. Progress and limitations of oral peptide delivery as a potentially transformative therapy. Expert Opin Drug Deliv 2022; 19:163-178. [PMID: 35255753 DOI: 10.1080/17425247.2022.2051476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The oral delivery of peptides offers advantages over the injectable route of administration due to patient convenience. However, oral delivery remains challenging due to physiological barriers. Numerous formulation technologies have been developed to overcome these challenges, and understanding the advantages and limitations of each technology is important for the development of new delivery systems to enable oral delivery of peptides designed for parenteral administration. AREAS COVERED This review summarizes key learnings from the use of permeation enhancers (PEs) for oral peptide delivery associated with solid dosage form optimization to maximize the PE effect. Furthermore, we will highlight the most recent emerging delivery strategies to improve oral peptide bioavailability such as nanoparticles, self-emulsifying drug delivery systems, gut shuttles, and ingestible devices. In addition, advantages and limitations of these technologies will be compared with the permeation enhancer technology. EXPERT OPINION Despite the success of permeation enhancer technology in the FDA approved oral peptide products for gastric and intestinal delivery, oral peptide delivery is still facing the immense challenge of low-to-single digit oral bioavailability and the impact of food and water intake on oral absorption. Optimization of drug product attributes such as dissolution kinetics is critical to overcome spreading and dilution effects in vivo to improve permeation enhancer efficacy. The next frontiers to substantially increase oral bioavailability and transform injectable peptides to oral deliverables may be ingestible devices and gut shuttles. In addition, ingestible devices may have potential to overcome the impact of food on oral bioavailability. However, clinical studies are necessary to inform the safety and efficacy of these emerging technologies.
Collapse
|
8
|
Panou DA, Diedrichsen RG, Kristensen M, Nielsen HM. Cell-Penetrating Peptides as Carriers for Transepithelial Drug Delivery. Methods Mol Biol 2022; 2383:371-384. [PMID: 34766302 DOI: 10.1007/978-1-0716-1752-6_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This chapter describes the use of cell-penetrating peptides (CPPs) as carriers for transepithelial delivery of therapeutic peptides. Assessment of transepithelial peptide permeation and the mechanisms of action that permeability enhancing drug carriers exert on the epithelium requires subtle sample preparation and analysis by orthogonal methods. Here, the preparation and use of CPP-insulin physical mixture samples including the quantification of insulin by enzyme-linked immunosorbent assay (ELISA) is described. In addition, effects of CPPs on the epithelium and its barrier properties immediately upon exposure and after a recovery period are evaluated by epithelial cell viability, transepithelial electrical resistance, immunostaining of the tight junction associated zonula occludens (ZO-1) protein, and actin cytoskeleton staining.
Collapse
Affiliation(s)
- Danai Anastasia Panou
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Drug Delivery and Biophysics of Biopharmaceuticals, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Ragna Guldsmed Diedrichsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Drug Delivery and Biophysics of Biopharmaceuticals, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Mie Kristensen
- CNS Drug Delivery & Barrier Modelling, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Mørck Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Drug Delivery and Biophysics of Biopharmaceuticals, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Kaminsky LW, Al-Sadi R, Ma TY. IL-1β and the Intestinal Epithelial Tight Junction Barrier. Front Immunol 2021; 12:767456. [PMID: 34759934 PMCID: PMC8574155 DOI: 10.3389/fimmu.2021.767456] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelial tight junction (TJ) barrier controls the paracellular permeation of contents from the intestinal lumen into the intestinal tissue and systemic circulation. A defective intestinal TJ barrier has been implicated as an important pathogenic factor in inflammatory diseases of the gut including Crohn's disease, ulcerative colitis, necrotizing enterocolitis, and celiac disease. Previous studies have shown that pro-inflammatory cytokines, which are produced during intestinal inflammation, including interleukin-1β (IL-1β), tumor necrosis factor-α, and interferon-γ, have important intestinal TJ barrier-modulating actions. Recent studies have shown that the IL-1β-induced increase in intestinal TJ permeability is an important contributing factor of intestinal inflammation. The IL-1β-induced increase in intestinal TJ permeability is mediated by regulatory signaling pathways and activation of nuclear transcription factor nuclear factor-κB, myosin light chain kinase gene activation, and post-transcriptional occludin gene modulation by microRNA and contributes to the intestinal inflammatory process. In this review, the regulatory role of IL-1β on intestinal TJ barrier, the intracellular mechanisms that mediate the IL-1β modulation of intestinal TJ permeability, and the potential therapeutic targeting of the TJ barrier are discussed.
Collapse
Affiliation(s)
- Lauren W Kaminsky
- Section of Allergy, Asthma, and Immunology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rana Al-Sadi
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Thomas Y Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
10
|
Brunner J, Ragupathy S, Borchard G. Target specific tight junction modulators. Adv Drug Deliv Rev 2021; 171:266-288. [PMID: 33617902 DOI: 10.1016/j.addr.2021.02.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Intercellular tight junctions represent a formidable barrier against paracellular drug absorption at epithelia (e.g., nasal, intestinal) and the endothelium (e.g., blood-brain barrier). In order to enhance paracellular transport of drugs and increase their bioavailability and organ deposition, active excipients modulating tight junctions have been applied. First-generation of permeation enhancers (PEs) acted by unspecific interactions, while recently developed PEs address specific physiological mechanisms. Such target specific tight junction modulators (TJMs) have the advantage of a defined specific mechanism of action. To date, merely a few of these novel active excipients has entered into clinical trials, as their lack in safety and efficiency in vivo often impedes their commercialisation. A stronger focus on the development of such active excipients would result in an economic and therapeutic improvement of current and future drugs.
Collapse
Affiliation(s)
- Joël Brunner
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Sakthikumar Ragupathy
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Gerrit Borchard
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
11
|
Maher S, Geoghegan C, Brayden DJ. Intestinal permeation enhancers to improve oral bioavailability of macromolecules: reasons for low efficacy in humans. Expert Opin Drug Deliv 2020; 18:273-300. [PMID: 32937089 DOI: 10.1080/17425247.2021.1825375] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Intestinal permeation enhancers (PEs) are substances that transiently alter the intestinal epithelial barrier to facilitate permeation of macromolecules with low oral bioavailability (BA). While a number of PEs have progressed to clinical testing in conventional formulations with macromolecules, there has been only low single digit increases in oral BA, irrespective of whether the drug met primary or secondary clinical endpoints. AREAS COVERED This article considers the causes of sub-optimal BA of macromolecules from PE dosage forms and suggests approaches that may improve performance in humans. EXPERT OPINION Permeation enhancement is most effective when the PE is co-localized with the macromolecule at the epithelial surface. Conditions in the GI tract impede optimal co-localization. Novel delivery systems that limit dilution and spreading of the PE and macromolecule in the small intestine have attempted to replicate promising enhancement efficacy observed in static drug delivery models.
Collapse
Affiliation(s)
- Sam Maher
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Caroline Geoghegan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Brayden D, Hill T, Fairlie D, Maher S, Mrsny R. Systemic delivery of peptides by the oral route: Formulation and medicinal chemistry approaches. Adv Drug Deliv Rev 2020; 157:2-36. [PMID: 32479930 DOI: 10.1016/j.addr.2020.05.007] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
In its 33 years, ADDR has published regularly on the po5tential of oral delivery of biologics especially peptides and proteins. In the intervening period, analysis of the preclinical and clinical trial failures of many purported platform technologies has led to reflection on the true status of the field and reigning in of expectations. Oral formulations of semaglutide, octreotide, and salmon calcitonin have completed Phase III trials, with oral semaglutide being approved by the FDA in 2019. The progress made with oral peptide formulations based on traditional permeation enhancers is against a background of low and variable oral bioavailability values of ~1%, leading to a current perception that only potent peptides with a viable cost of synthesis can be realistically considered. Desirable features of candidates should include a large therapeutic index, some stability in the GI tract, a long elimination half-life, and a relatively low clearance rate. Administration in nanoparticle formats have largely disappointed, with few prototypes reaching clinical trials: insufficient particle loading, lack of controlled release, low epithelial particle uptake, and lack of scalable synthesis being the main reasons for discontinuation. Disruptive technologies based on engineered devices promise improvements, but scale-up and toxicology aspects are issues to address. In parallel, medicinal chemists are synthesizing stable hydrophobic macrocyclic candidate peptides of lower molecular weight and with potential for greater oral bioavailability than linear peptides, but perhaps without the same requirement for elaborate drug delivery systems. In summary, while there have been advances in understanding the limitations of peptides for oral delivery, low membrane permeability, metabolism, and high clearance rates continue to hamper progress.
Collapse
|
13
|
Huang S, Fu Y, Xu B, Liu C, Wang Q, Luo S, Nong F, Wang X, Huang S, Chen J, Zhou L, Luo X. Wogonoside alleviates colitis by improving intestinal epithelial barrier function via the MLCK/pMLC2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153179. [PMID: 32062328 DOI: 10.1016/j.phymed.2020.153179] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 01/20/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Intestinal epithelial barrier dysfunction, which involves myosin light chain kinase (MLCK) activation, contributes to the occurrence and progression of inflammation in inflammatory bowel disease (IBD). Wogonoside helps maintain intestinal homeostasis in mice with dextran sulfate sodium (DSS)-induced colitis, but it is unclear whether it modulates intestinal barrier function. PURPOSE Here, we demonstrate that wogonoside protects against intestinal barrier dysfunction in colitis via the MLCK/pMLC2 pathway both in vivo and in vitro. METHODS Caco-2 cell monolayers treated with the proinflammatory cytokine TNF-α showed barrier dysfunction and were assessed in the absence and presence of wogonoside for various physiological, morphological, and biochemical parameters. Colitis was induced by 3% DSS in mice, which were used as an animal model to explore the pharmacodynamics of wogonoside. We detected MLCK/pMLC2 pathway proteins via western blot analysis, assessed the cytokines IL-13 and IFN-γ via ELISA, tested bacterial translocation via fluorescence in situ hybridization (FISH) and a proper sampling of secondary lymphoid organs for bacterial culture. In addition, the docking affinity of wogonoside and MLCK was observed with DS2.5 software. RESULTS Wogonoside alleviated the disruption of transepithelial electrical resistance (TER) in TNF-α exposured Caco-2 cell; FITC-dextran hyperpermeability; loss of the tight junction (TJ) proteins occludin, ZO-1 and claudin-1 in Caco-2 cell monolayers; and bacterial translocation in colitic mice. Moreover, wogonoside reduced the levels of the proinflammatory cytokines IL-13 and IFN-γ to maintain intestinal immune homeostasis. Transmission electron microscopy (TEM) confirmed that wogonoside ameliorated the destruction of intestinal epithelial TJs. Wogonoside not only inhibited the cytoskeletal F-actin rearrangement induced by TNF-α, stabilized the cytoskeletal structure, suppressed MLCK protein expression, and reduced MLC2 phosphorylation. In addition, the results of molecular docking analysis showed that wogonoside had a high affinity for MLCK and formed hydrogen bonds with the amino acid residue LYS261 and π bonds with LYS229. CONCLUSION Collectively, our study indicates that wogonoside alleviates colitis by protecting against intestinal barrier dysfunction, and the potential mechanism may involve regulation of TJs via the MLCK/pMLC2 signaling pathway. Meanwhile, our study also explains the success of S. baicalensis in the treatment of ulcerative colitis (UC).
Collapse
Affiliation(s)
- Shaowei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yajun Fu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chang Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuang Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feifei Nong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Songyu Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinyan Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lian Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xia Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
14
|
|
15
|
Han X, Zhang E, Shi Y, Song B, Du H, Cao Z. Biomaterial-tight junction interaction and potential impacts. J Mater Chem B 2019; 7:6310-6320. [PMID: 31364678 PMCID: PMC6812605 DOI: 10.1039/c9tb01081e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The active pharmaceutical ingredients (APIs) have to cross the natural barriers and get into the blood to impart the pharmacological effects. The tight junctions (TJs) between the epithelial cells serve as the major selectively permeable barriers and control the paracellular transport of the majority of hydrophilic drugs, in particular, peptides and proteins. TJs perfectly balance the targeted transport and the exclusion of other unexpected pathogens under the normal conditions. Many biomaterials have shown the capability to open the TJs and improve the oral bioavailability and targeting efficacy of the APIs. Nevertheless, there is limited understanding of the biomaterial-TJ interactions. The opening of the TJs further poses the risk of autoimmune diseases and infections. This review article summarizes the most updated literature and presents insights into the TJ structure, the biomaterial-TJ interaction mechanism, the benefits and drawbacks of TJ disruption, and methods for evaluating such interactions.
Collapse
Affiliation(s)
- Xiangfei Han
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| | - Ershuai Zhang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| | - Yuanjie Shi
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| | - Boyi Song
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| | - Hong Du
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| |
Collapse
|
16
|
McCartney F, Rosa M, Brayden DJ. Evaluation of Sucrose Laurate as an Intestinal Permeation Enhancer for Macromolecules: Ex Vivo and In Vivo Studies. Pharmaceutics 2019; 11:E565. [PMID: 31683652 PMCID: PMC6921008 DOI: 10.3390/pharmaceutics11110565] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Oral delivery of macromolecules requires permeation enhancers (PEs) adaptable to formulation. Sucrose laurate (SL) (D1216), a food grade surfactant, was assessed in Caco-2 monolayers, isolated rat intestinal tissue mucosae, and rat intestinal instillations. Accordingly, 1 mM SL increased the apparent permeability coefficient (Papp) of [14C]-mannitol and reduced transepithelial electrical resistance (TEER) across monolayers. It altered expression of the tight junction protein, ZO-1, increased plasma membrane potential, and decreased mitochondrial membrane potential in Caco-2 cells. The concentrations that increased flux were of the same order as those that induced cytotoxicity. In rat colonic tissue mucosae, the same patterns emerged in respect to the concentration-dependent increases in paracellular marker fluxes and TEER reductions with 5 mM being the key concentration. While the histology revealed some perturbation, ion transport capacity was retained. In rat jejunal and colonic instillations, 50 and 100 mM SL co-administered with insulin induced blood glucose reductions and achieved relative bioavailability values of 2.4% and 8.9%, respectively, on a par with the gold standard PE, sodium caprate (C10). The histology of the intestinal loops revealed little damage. In conclusion, SL is a candidate PE with high potential for emulsion-based systems. The primary action is plasma membrane perturbation, leading to tight junction openings and a predominant paracellular flux.
Collapse
Affiliation(s)
- Fiona McCartney
- UCD School of Veterinary Medicine and UCD Conway Institute, University, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Mónica Rosa
- Sublimity Therapeutics, DCU Alpha Innovation Campus, Dublin, Dublin 11, Ireland.
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
17
|
Application of Permeation Enhancers in Oral Delivery of Macromolecules: An Update. Pharmaceutics 2019; 11:pharmaceutics11010041. [PMID: 30669434 PMCID: PMC6359609 DOI: 10.3390/pharmaceutics11010041] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/29/2022] Open
Abstract
The application of permeation enhancers (PEs) to improve transport of poorly absorbed active pharmaceutical ingredients across the intestinal epithelium is a widely tested approach. Several hundred compounds have been shown to alter the epithelial barrier, and although the research emphasis has broadened to encompass a role for nanoparticle approaches, PEs represent a key constituent of conventional oral formulations that have progressed to clinical testing. In this review, we highlight promising PEs in early development, summarize the current state of the art, and highlight challenges to the translation of PE-based delivery systems into safe and effective oral dosage forms for patients.
Collapse
|