1
|
Kędra K, Oledzka E, Sobczak M. Self-Immolative Domino Dendrimers as Anticancer-Drug Delivery Systems: A Review. Pharmaceutics 2024; 16:668. [PMID: 38794329 PMCID: PMC11125333 DOI: 10.3390/pharmaceutics16050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Worldwide cancer statistics have indicated about 20 million new cancer cases and over 10 million deaths in 2022 (according to data from the International Agency for Research on Cancer). One of the leading cancer treatment strategies is chemotherapy, using innovative drug delivery systems (DDSs). Self-immolative domino dendrimers (SIDendr) for triggered anti-cancer drugs appear to be a promising type of DDSs. The present review provides an up-to-date survey on the contemporary advancements in the field of SIDendr-based anti-cancer drug delivery systems (SIDendr-ac-DDSs) through an exhaustive analysis of the discovery and application of these materials in improving the pharmacological effectiveness of both novel and old drugs. In addition, this article discusses the designing, chemical structure, and targeting techniques, as well as the properties, of several SIDendr-based DDSs. Approaches for this type of targeted DDSs for anti-cancer drug release under a range of stimuli are also explored.
Collapse
Affiliation(s)
- Karolina Kędra
- Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka Str., 01-224 Warsaw, Poland;
| | - Ewa Oledzka
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry and Biomaterials, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland;
| | - Marcin Sobczak
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry and Biomaterials, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland;
| |
Collapse
|
2
|
Strzelecka K, Piotrowska U, Sobczak M, Oledzka E. The Advancement of Biodegradable Polyesters as Delivery Systems for Camptothecin and Its Analogues-A Status Report. Int J Mol Sci 2023; 24:ijms24021053. [PMID: 36674567 PMCID: PMC9866533 DOI: 10.3390/ijms24021053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Camptothecin (CPT) has demonstrated antitumor activity in lung, ovarian, breast, pancreas, and stomach cancers. However, this drug, like many other potent anticancer agents, is extremely water-insoluble. Furthermore, pharmacology studies have revealed that prolonged schedules must be administered continuously. For these reasons, several of its water-soluble analogues, prodrugs, and macromolecular conjugates have been synthesized, and various formulation approaches have been investigated. Biodegradable polyesters have gained popularity in cancer treatment in recent years. A number of biodegradable polymeric drug delivery systems (DDSs), designed for localized and systemic administration of therapeutic agents, as well as tumor-targeting macromolecules, have entered clinical trials, demonstrating the importance of biodegradable polyesters in cancer therapy. Biodegradable polyester-based DDSs have the potential to deliver the payload to the target while also increasing drug availability at intended site. The systemic toxicity and serious side-effects associated with conventional cancer therapies can be significantly reduced with targeted polymeric systems. This review elaborates on the use of biodegradable polyesters in the delivery of CPT and its analogues. The design of various DDSs based on biodegradable polyesters has been described, with the drug either adsorbed on the polymer's surface or encapsulated within its macrostructure, as well as those in which a hydrolyzed chemical bond is formed between the active substance and the polymer chain. The data related to the type of DDSs, the kind of linkage, and the details of in vitro and in vivo studies are included.
Collapse
Affiliation(s)
- Katarzyna Strzelecka
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Urszula Piotrowska
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Marcin Sobczak
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Military Institute of Hygiene and Epidemiology, 4 Kozielska Str., 01-163 Warsaw, Poland
| | - Ewa Oledzka
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-572-07-55
| |
Collapse
|
3
|
Kanth S, Malgar Puttaiahgowda Y, Gupta S, T S. Recent advancements and perspective of ciprofloxacin-based antimicrobial polymers. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:918-949. [PMID: 36346071 DOI: 10.1080/09205063.2022.2145872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In recent years, microbial pathogens, which are major sources of infections, have become a widespread concern across the world. The number of deaths caused by infectious diseases is continually rising, according to World Health Organization records. Antimicrobial resistance, particularly resistance to several drugs, is steadily growing in percentages of organisms. Ciprofloxacin is a second-generation fluoroquinolone with significant antimicrobial activity and pharmacokinetic characteristics. According to studies, many bacteria are resistant to the antibiotic ciprofloxacin. In this article, we look into polymers as ciprofloxacin macromolecular carriers with a wide range of antibacterial activity. We also discuss the latter form of coupling, in which ciprofloxacin and polymers are covalently bonded. This article also discusses the use of antimicrobial polymers in combination with ciprofloxacin in a various sectors. The current review article provides an overview of publications in the last five years on polymer loaded or modified with ciprofloxacin having applications in numerous sectors.
Collapse
Affiliation(s)
- Shreya Kanth
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Yashoda Malgar Puttaiahgowda
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sonali Gupta
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Swathi T
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
4
|
Monteiro KLC, Silva ON, Dos Santos Nascimento IJ, Mendonça Júnior FJB, Aquino PGV, da Silva-Júnior EF, de Aquino TM. Medicinal Chemistry of Inhibitors Targeting Resistant Bacteria. Curr Top Med Chem 2022; 22:1983-2028. [PMID: 35319372 DOI: 10.2174/1568026622666220321124452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/01/2022] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
Abstract
The discovery of antibiotics was a revolutionary feat that provided countless health benefits. The identification of penicillin by Alexander Fleming initiated the era of antibiotics, represented by constant discoveries that enabled effective treatments for the different classes of diseases caused by bacteria. However, the indiscriminate use of these drugs allowed the emergence of resistance mechanisms of these microorganisms against the available drugs. In addition, the constant discoveries in the 20th century generated a shortage of new molecules, worrying health agencies and professionals about the appearance of multidrug-resistant strains against available drugs. In this context, the advances of recent years in molecular biology and microbiology have allowed new perspectives in drug design and development, using the findings related to the mechanisms of bacterial resistance to generate new drugs that are not affected by such mechanisms and supply new molecules to be used to treat resistant bacterial infections. Besides, a promising strategy against bacterial resistance is the combination of drugs through adjuvants, providing new expectations in designing new antibiotics and new antimicrobial therapies. Thus, this manuscript will address the main mechanisms of bacterial resistance under the understanding of medicinal chemistry, showing the main active compounds against efflux mechanisms, and also the application of the use of drug delivery systems, and finally, the main potential natural products as adjuvants or with promising activity against resistant strains.
Collapse
Affiliation(s)
- Kadja Luana Chagas Monteiro
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | - Osmar Nascimento Silva
- Faculty of Pharmacy, University Center of Anápolis, Unievangélica, 75083-515, Anápolis, Goiás, Brazil
| | - Igor José Dos Santos Nascimento
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | | | | | - Edeildo Ferreira da Silva-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| |
Collapse
|
5
|
Ma J, Jiang L, Liu G. Cell membrane-coated nanoparticles for the treatment of bacterial infection. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1825. [PMID: 35725897 DOI: 10.1002/wnan.1825] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Despite the enormous success of antibiotics in antimicrobial therapy, the rapid emergence of antibiotic resistance and the complexity of the bacterial infection microenvironment make traditional antibiotic therapy face critical challenges against resistant bacteria, antitoxin, and intracellular infections. Consequently, there is a critical need to design antimicrobial agents that target infection microenvironment and alleviate antibiotic resistance. Cell membrane-coated nanoparticles (CMCNPs) are biomimetic materials that can be obtained by wrapping the cell membrane vesicles directly onto the surface of the nanoparticles (NPs) through physical means. Incorporating the biological functions of cell membrane vesicles and the superior physicochemical properties of NPs, CMCNPs have shown great promise in recent years for targeting infections, neutralizing bacterial toxins, and designing bacterial infection vaccines. This review highlights topics where CMCNPs present great value in advancing the treatment of bacterial infections, including drug delivery, detoxification, and vaccination. Lastly, we discuss the future hurdles and prospects of translating this technique into clinical practice, providing a comprehensive review of the technological developments of CMCNPs in the treatment of bacterial infections. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Jiaxin Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Lai Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Gang Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Sobczak M, Kędra K. Biomedical Polyurethanes for Anti-Cancer Drug Delivery Systems: A Brief, Comprehensive Review. Int J Mol Sci 2022; 23:ijms23158181. [PMID: 35897757 PMCID: PMC9329922 DOI: 10.3390/ijms23158181] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/28/2022] Open
Abstract
With the intensive development of polymeric biomaterials in recent years, research using drug delivery systems (DDSs) has become an essential strategy for cancer therapy. Various DDSs are expected to have more advantages in anti-neoplastic effects, including easy preparation, high pharmacology efficiency, low toxicity, tumor-targeting ability, and high drug-controlled release. Polyurethanes (PUs) are a very important kind of polymers widely used in medicine, pharmacy, and biomaterial engineering. Biodegradable and non-biodegradable PUs are a significant group of these biomaterials. PUs can be synthesized by adequately selecting building blocks (a polyol, a di- or multi-isocyanate, and a chain extender) with suitable physicochemical and biological properties for applications in anti-cancer DDSs technology. Currently, there are few comprehensive reports on a summary of polyurethane DDSs (PU-DDSs) applied for tumor therapy. This study reviewed state-of-the-art PUs designed for anti-cancer PU-DDSs. We studied successful applications and prospects for further development of effective methods for obtaining PUs as biomaterials for oncology.
Collapse
Affiliation(s)
- Marcin Sobczak
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
- Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-572-07-83
| | - Karolina Kędra
- Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka St., 01-224 Warsaw, Poland;
| |
Collapse
|
7
|
Enzyme-Responsive Hydrogels as Potential Drug Delivery Systems-State of Knowledge and Future Prospects. Int J Mol Sci 2022; 23:ijms23084421. [PMID: 35457239 PMCID: PMC9031066 DOI: 10.3390/ijms23084421] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/25/2022] Open
Abstract
Fast advances in polymer science have provided new hydrogels for applications in drug delivery. Among modern drug formulations, polymeric type stimuli-responsive hydrogels (SRHs), also called smart hydrogels, deserve special attention as they revealed to be a promising tool useful for a variety of pharmaceutical and biomedical applications. In fact, the basic feature of these systems is the ability to change their mechanical properties, swelling ability, hydrophilicity, or bioactive molecules permeability, which are influenced by various stimuli, particularly enzymes. Indeed, among a great number of SHRs, enzyme-responsive hydrogels (ERHs) gain much interest as they possess several potential biomedical applications (e.g., in controlled release, drug delivery, etc.). Such a new type of SHRs directly respond to many different enzymes even under mild conditions. Therefore, they show either reversible or irreversible enzyme-induced changes both in chemical and physical properties. This article reviews the state-of-the art in ERHs designed for controlled drug delivery systems (DDSs). Principal enzymes used for biomedical hydrogel preparation were presented and different ERHs were further characterized focusing mainly on glucose oxidase-, β-galactosidase- and metalloproteinases-based catalyzed reactions. Additionally, strategies employed to produce ERHs were described. The current state of knowledge and the discussion were made on successful applications and prospects for further development of effective methods used to obtain ERH as DDSs.
Collapse
|
8
|
Baati T, Ben Brahim M, Salek A, Selmi M, Njim L, Umek P, Aouane A, Hammami M, Hosni K. Flumequine-loaded titanate nanotubes as antibacterial agents for aquaculture farms. RSC Adv 2022; 12:5953-5963. [PMID: 35424545 PMCID: PMC8981844 DOI: 10.1039/d1ra08533f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/06/2022] [Indexed: 11/21/2022] Open
Abstract
Flumequine (FLUM), a quinolone-derived antibiotic is one of the most prescribed drugs in aquaculture farms. However, its intensive use becomes worrisome because of its environmental risks and the emergence of FLUM-resistant bacteria. To overcome these problems we propose in this study the encapsulation and the delivery of FLUM by titanate nanotubes (TiNTs). Optimal FLUM loading was reached by suspending the dehydrated powder nanomaterials (FLUM : TiNTs ratio = 1 : 5) in ethanol. The drug entrapment efficiency was calculated to be 80% approximately with a sustained release in PBS at 37 °C up to 5 days. Then FLUM@TiNTs was evaluated for both its in vitro drug release and antimicrobial activity against Escherichia coli (E. coli). Spectacularly high antibacterial activity compared to those of free FLUM antibiotic was obtained confirming the efficiency of TiNTs to protect FLUM from rapid degradation and transformation within bacteria improving thereby its antibacterial effect. Indeed FLUM@TiNTs was efficient to decrease gradually the bacterial viability to reach ≈5% after 5 days versus ≈75% with free FLUM. Finally, the ex vivo permeation experiments on sea bass (Dicentrachus labrax) intestine shows that TiNTs act to increase the intestinal permeation of FLUM during the experiment. Indeed the encapsulated FLUM flux increased 12 fold (1.46 μg cm2 h−1) compared to the free antibiotic (0.18 μg cm2 h−1). Thanks to its physical properties (diameter 10 nm, tubular shape…) and its high stability in the simulated intestinal medium, TiNTs are easy internalized by enterocytes, thus involving an endocytosis mechanism, and then improve intestinal permeation of FLUM. Taken together, FLUM@TiNTs hold potential as an effective approach for enhancing the antimicrobial activity of FLUM and pave the way not only for future pharmacokinetic studies in the treatment and targeting of fish infections but also for instating of novel strategies that overcome the challenges associated with the abusive use of antibiotics in fish farming. Flumequine (FLUM), a quinolone-derived antibiotic is one of the most prescribed drugs in aquaculture farms.![]()
Collapse
Affiliation(s)
- Tarek Baati
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| | - Mounir Ben Brahim
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| | - Abir Salek
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| | - Mouna Selmi
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| | - Leila Njim
- Service d'Anatomie Pathologique, CHU de Monastir, Université de Monastir Tunisia
| | - Polona Umek
- Jožef Stefan Institute Jamova cesta 39 SI-1000 Ljubljana Slovenia
| | - Aicha Aouane
- Centre de Microscopie Electronique, IBDML campus Luminy Marseille 13000 France
| | - Mohamed Hammami
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| | - Karim Hosni
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| |
Collapse
|
9
|
Wu S, Gong Y, Liu S, Pei Y, Luo X. Functionalized phosphorylated cellulose microspheres: Design, characterization and ciprofloxacin loading and releasing properties. Carbohydr Polym 2021; 254:117421. [DOI: 10.1016/j.carbpol.2020.117421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/24/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
|
10
|
Islan GA, Gonçalves LMD, Marto J, Duarte A, Alvarez VA, Castro GR, Almeida AJ. Effect of α-tocopherol on the physicochemical, antioxidant and antibacterial properties of levofloxacin loaded hybrid lipid nanocarriers. NEW J CHEM 2021. [DOI: 10.1039/d0nj03781h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-toxic hybrid lipidic nanoparticles become a promising tool for enhanced lung delivery of levofloxacin in combination with antioxidant properties.
Collapse
Affiliation(s)
- Germán A. Islan
- Laboratorio de Nanobiomateriales
- CINDEFI
- Departamento de Química
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata (UNLP) – CONICET (CCT La Plata)
| | - Lídia M. D. Gonçalves
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisbon
- Portugal
| | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisbon
- Portugal
| | - Aida Duarte
- Laboratory of Microbiology
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisbon
- Portugal
| | - Vera A. Alvarez
- Grupo de Materiales Compuestos de Matriz Polimérica (CoMP)
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA)
- Facultad de Ingeniería
- Universidad Nacional de Mar del Plata (UNMDP) – CONICET
- Buenos Aires
| | - Guillermo R. Castro
- Laboratorio de Nanobiomateriales
- CINDEFI
- Departamento de Química
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata (UNLP) – CONICET (CCT La Plata)
| | - António J. Almeida
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- 1649-003 Lisbon
- Portugal
| |
Collapse
|
11
|
Ding X, Wang A, Tong W, Xu FJ. Biodegradable Antibacterial Polymeric Nanosystems: A New Hope to Cope with Multidrug-Resistant Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900999. [PMID: 30957927 DOI: 10.1002/smll.201900999] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/19/2019] [Indexed: 05/14/2023]
Abstract
The human society is faced with daunting threats from bacterial infections. Over decades, a variety of antibacterial polymeric nanosystems have exhibited great promise for the eradication of multidrug-resistant bacteria and persistent biofilms by enhancing bacterial recognition and binding capabilities. In this Review, the "state-of-the-art" biodegradable antibacterial polymeric nanosystems, which could respond to bacteria environments (e.g., acidity or bacterial enzymes) for controlled antibiotic release or multimodal antibacterial treatment, are summarized. The current antibacterial polymeric nanosystems can be categorized into antibiotic-containing and intrinsic antibacterial nanosystems. The antibiotic-containing polymeric nanosystems include antibiotic-encapsulated nanocarriers (e.g., polymeric micelles, vesicles, nanogels) and antibiotic-conjugated polymer nanosystems for the delivery of antibiotic drugs. On the other hand, the intrinsic antibacterial polymer nanosystems containing bactericidal moieties such as quaternary ammonium groups, phosphonium groups, polycations, antimicrobial peptides (AMPs), and their synthetic mimics, are also described. The biodegradability of the nanosystems can be rendered by the incorporation of labile chemical linkages, such as carbonate, ester, amide, and phosphoester bonds. The design and synthesis of the degradable polymeric building blocks and their fabrications into nanosystems are also explicated, together with their plausible action mechanisms and potential biomedical applications. The perspectives of the current research in this field are also described.
Collapse
Affiliation(s)
- Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Anzhi Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Tong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|