1
|
Patel HS, Vyas BA, Tripathi S, Sharma RK. Design, Development, and Evaluation of SA-F127:TPGS Polymeric Mixed Micelles for Improved Delivery of Glipizide Drug: In-vitro, Ex-vivo, and In-vivo Investigations. AAPS PharmSciTech 2023; 24:213. [PMID: 37848728 DOI: 10.1208/s12249-023-02659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
The anti-diabetic glipizide (GLN) drug has notable pharmaceutical advantages, but poor aqueous solubility restricts its wide applications. The present work was to develop a mixed polymeric micelle system composed of SA-F127 and TPGS to improve the water solubility and effective delivery of the GLN. First, we synthesized SA-F127 and confirmed it through FTIR, NMR, and GPC techniques. The GLN-PMM were fabricated with the thin-film technique and optimized with CCD design. The developed GLN-PMM was characterized using DLS, Zeta, TEM, Rheology, FTIR, DSC, and XRD measurements. The GLN-PMM manifested a spherical morphology with 67.86 nm particle size, a -3.85 mV zeta potential, and a 0.582±0.06 PDI value. The polymeric mixed micelles showed excellent compatibility with GLN and were amorphous in nature. NMR studies confirmed the encapsulation of GLN in the core of the mixed micelle. In addition, the GLN-PMM micelles were tested in vitro for cumulative drug release, ex vivo for permeation, and in vivo for anti-diabetic investigations. The GLN-PMM release profile in the various pH environments showed over 90% after 24 h, clearly indicating sustained release. The GLN-PMM micelles gave higher 88.86±3.39% GLN permeation from the goat intestine compared with free GLN. In-vivo anti-diabetic investigation proves the powerful anti-diabetic properties of GLN-PMM in comparison to the marketed formulation. These findings demonstrated that the polymeric mixed micelles of SA-F127 and TPGS could be a promising, effective, and environment-friendly approach for oral delivery of the GLN.
Collapse
Affiliation(s)
- Hemil S Patel
- Applied Chemistry Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| | - Bhavin A Vyas
- Department of Pharmacology and Pharmacy Practice, Maliba Pharmacy College, Uka Tarsadia University, Bardoli, 394350, Gujarat, India
| | - Subhash Tripathi
- Department of Chemistry, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Rakesh K Sharma
- Applied Chemistry Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India.
| |
Collapse
|
2
|
Formulation, Solubilization, and In Vitro Characterization of Quercetin-Incorporated Mixed Micelles of PEO-PPO-PEO Block Copolymers. Appl Biochem Biotechnol 2021; 194:445-463. [PMID: 34611857 DOI: 10.1007/s12010-021-03691-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Quercetin (QCN) is a plant polyphenol with a variety of medicinal effects. Poor water solubility, on the other hand, restricts its therapeutic effectiveness. The purpose of this study was to develop mixed micellar systems using two biocompatible amphiphilic PEO-PPO-PEO triblock copolymers, Pluronic P123 (EO20-PO70-EO20) and Pluronic F88 (EO104-PO39-EO104), in order to enhance the aqueous solubility and oral bioavailability of QCN drug. The critical micelle concentrations (CMCs) of mixed P123/F88 micellar solutions were investigated using UV-visible spectroscopy with pyrene as a probe. Mixed P123/F88 micelles have low CMCs, indicating that they have a stable micelle structure even when diluted. The solubility of QCN in aqueous mixed P123/F88 micellar solutions at different temperatures was investigated to better understand drug entrapment. The QCN solubility increased with increasing temperature in the mixed P123/F88 micellar system. The QCN-incorporated mixed P123/F88 micelles were prepared using the thin-film hydration method and were well characterized in terms of size and morphology, compatibility, in vitro release and antioxidant profile. In addition, the cell proliferation activity of the mixed micelles was evaluated in the MCF-7 cell line. The QCN-incorporated mixed P123/F88 micelles had a small particle size (< 25 nm) and a negative zeta potential with a spherical shape. The in vitro release behaviour of QCN from a mixed P123/F88 micellar system was slower and more sustained at physiological conditions. The oxidation resistance of QCN-incorporating mixed P123/F88 micelles was shown to be considerably higher than that of pure QCN. An in vitro cell proliferation study revealed that QCN-incorporated mixed micells were effective in inhibiting tumour cell growth. In conclusion, the QCN-incorporated mixed P123/F88 micelle may be a promising approach to increase QCN oral bioavailability, antioxidant activity, and cell viability.
Collapse
|
3
|
Xu C, Xu J, Zheng Y, Fang Q, Lv X, Wang X, Tang R. Active-targeting and acid-sensitive pluronic prodrug micelles for efficiently overcoming MDR in breast cancer. J Mater Chem B 2021; 8:2726-2737. [PMID: 32154530 DOI: 10.1039/c9tb02328c] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multidrug resistance (MDR) seriously hinders therapeutic efficacy in clinical cancer treatment. Herein, we reported new polymeric prodrug micelles with tumor-targeting and acid-sensitivity properties based on two different pluronic copolymers (F127 and P123) for enhancing tumor MDR reversal and chemotherapy efficiency in breast cancer. Hybrid micelles were composed of phenylboric acid (PBA)-modified F127 (active-targeting group) and doxorubicin (DOX)-grafted P123 (prodrug groups), which were named as FBP-CAD. FBP-CAD exhibited good stability in a neutral environment and accelerated drug release under mildly acidic conditions by the cleavage of β-carboxylic amides bonds. In vitro studies demonstrated that FBP-CAD significantly increased cellular uptake and drug concentration in MCF-7/ADR cells through the homing ability of PBA and the anti-MDR effect of P123. In vivo testing further indicated that hybrid micelles facilitated drug accumulation at tumor sites as well as reduced side effects to normal organs. The synergistic effect of active-targeting and MDR-reversal leads to the highest tumor growth inhibition (TGI 78.2%). Thus, these multifunctional micelles provide a feasible approach in nanomedicine for resistant-cancer treatment.
Collapse
Affiliation(s)
- Cheng Xu
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, Hefei, 230601, P. R. China.
| | - Jiaxi Xu
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, Hefei, 230601, P. R. China.
| | - Yan Zheng
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, Hefei, 230601, P. R. China.
| | - Qin Fang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, Hefei, 230601, P. R. China.
| | - Xiaodong Lv
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, Hefei, 230601, P. R. China.
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, Hefei, 230601, P. R. China.
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui University, Hefei, 230601, P. R. China.
| |
Collapse
|
4
|
Targeting anticancer drugs with pluronic aggregates: Recent updates. Int J Pharm 2020; 586:119544. [DOI: 10.1016/j.ijpharm.2020.119544] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
|
5
|
Cheng X, Zeng X, Zheng Y, Fang Q, Wang X, Wang J, Tang R. pH-sensitive pluronic micelles combined with oxidative stress amplification for enhancing multidrug resistance breast cancer therapy. J Colloid Interface Sci 2020; 565:254-269. [PMID: 31978788 DOI: 10.1016/j.jcis.2020.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/11/2020] [Accepted: 01/11/2020] [Indexed: 11/25/2022]
Abstract
Multidrug resistance (MDR) is one of the major obstacles to clinical cancer chemotherapy. Herein, we designed new pH-sensitive pluronic micelles with the synergistic effects of oxidative therapy and MDR reversal. Pluronic (P123) was modified with α-tocopheryl succinate (α-TOS) via an acid-labile ortho ester (OE) linkage to give a pH-sensitive copolymer (POT). Self-assembled POT micelles exhibited desirable size (~80 nm), excellent anti-dilution ability, high drug loading (~85%), acid-triggered degradation and drug release behaviours. In vitro cell experiments verified that POT micelles could significantly reverse MDR through suppressing the function of drug effluxs mediated by P123 and induce more reactive oxygen species (ROS) generation mediated by α-TOS, resulting in enhanced cytotoxicity and apoptosis in MDR cells. In vivo studies further revealed that DOX-loaded POT micelles (POT-DOX) possessed the highest drug accumulation (3.03% ID/g at 24 h) and the strongest tumour growth inhibition (TGI 83.48%). Pathological analysis also indicated that POT-DOX could induce more apoptosis or necrosis at the site of tumour without distinct damage to normal tissues. Overall, these smart POT micelles have great potential as promising nano-carriers for MDR reversal and cancer treatment.
Collapse
Affiliation(s)
- Xu Cheng
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Xiaoli Zeng
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Yan Zheng
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Qin Fang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Jun Wang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China.
| |
Collapse
|