1
|
Zhang Y, Wang Y, Zhang H, Huang S, Li Y, Long J, Han Y, Lin Q, Gong T, Sun X, Zhang Z, Zhang L. Replacing cholesterol with asiatic acid to prolong circulation and enhance anti-metastatic effects of non-PEGylated liposomes. J Control Release 2024; 366:585-595. [PMID: 38215987 DOI: 10.1016/j.jconrel.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/14/2024]
Abstract
Cholesterol is an indispensable component of most liposomes, heavily influencing their physical and surface properties. In this study, cholesterol in non-PEGylated liposomes was replaced by its analog, asiatic acid (AA), to generate liposomes with an alternative composition. These AA liposomes are generally smaller and more rigid than conventional liposomes, circulate longer in the body, and accumulate more in primary tumors and lung metastases in vivo. On the other hand, as an active ingredient, AA can decrease TGF-β secretion to inhibit the epithelial-mesenchymal transition (EMT) process, increase the sensitivity of tumor cells to doxorubicin (DOX), and synergize with DOX to enhance the immune response, thus improving their antitumor and anti-metastasis efficiency. Based on this rationale, DOX-loaded AA liposomes were fabricated and tested against triple-negative breast cancer (TNBC). Results showed that compared with conventional liposomes, the DOX-AALip provided approximately 28.4% higher tumor volume reduction with almost no metastatic nodules in the mouse model. Our data demonstrate that AA liposomes are safe, simple, and efficient, and thus in many situations may be used instead of conventional liposomes, having good potential for further clinical translational development.
Collapse
Affiliation(s)
- Yicong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yujia Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hanming Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shiqi Huang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yuai Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiaying Long
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yikun Han
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qing Lin
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Ghaeini Hesarooeyeh Z, Basham A, Sheybani-Arani M, Abbaszadeh M, Salimi Asl A, Moghbeli M, Saburi E. Effect of resveratrol and curcumin and the potential synergism on hypertension: A mini-review of human and animal model studies. Phytother Res 2024; 38:42-58. [PMID: 37784212 DOI: 10.1002/ptr.8023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Resveratrol (RES) and curcumin (CUR) are two of the most extensively studied bioactive compounds in cardiovascular research from the past until today. These compounds have effectively lowered blood pressure by downregulating the renin-angiotensin system, exerting antioxidant effects, and exhibiting antiproliferative activities on blood vessels. This study aims to summarize the results of human and animal studies investigating the effects of CUR, RES, and their combination on hypertension and the molecular mechanisms involved. The published trials' results are controversial regarding blood pressure reduction with different doses of RES and CUR, highlighting the need to address this issue.
Collapse
Affiliation(s)
- Zahra Ghaeini Hesarooeyeh
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ayoub Basham
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Mahshid Abbaszadeh
- Student Research Committee, School of Dentistry, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ali Salimi Asl
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Ying N, Liu S, Zhang M, Cheng J, Luo L, Jiang J, Shi G, Wu S, Ji J, Su H, Pan H, Zeng D. Nano delivery system for paclitaxel: Recent advances in cancer theranostics. Colloids Surf B Biointerfaces 2023; 228:113419. [PMID: 37393700 DOI: 10.1016/j.colsurfb.2023.113419] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Paclitaxel is one of the most effective chemotherapeutic drugs which processes the obvious curative effect for a broad range of cancers including breast, ovarian, lung, and head & neck cancers. Though some novel paclitaxel-loaded formulations have been developed, the clinical application of the paclitaxel is still limited due to its toxicity and solubility issues. Over the past decades, we have seen rapid advances in applying nanocarriers in paclitaxel delivery systems. The nano-drug delivery systems offer unique advantages in enhancing the aqueous solubility, reducing side effects, increasing permeability, prolonging circulation half-life of paclitaxel. In this review, we summarize recent advances in developing novel paclitaxel-loaded nano delivery systems based on nanocarriers. These nanocarriers show great potentials in overcoming the disadvantages of pure paclitaxel and as a result improving the efficacy.
Collapse
Affiliation(s)
- Na Ying
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sisi Liu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengmeng Zhang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Cheng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Linghuan Luo
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiayi Jiang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Gaofan Shi
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shu Wu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Ji
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haoyuan Su
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongzhi Pan
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| | - Dongdong Zeng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| |
Collapse
|
4
|
Yang F, Xue J, Wang G, Diao Q. Nanoparticle-based drug delivery systems for the treatment of cardiovascular diseases. Front Pharmacol 2022; 13:999404. [PMID: 36172197 PMCID: PMC9512262 DOI: 10.3389/fphar.2022.999404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease is the most common health problem worldwide and remains the leading cause of morbidity and mortality. Despite recent advances in the management of cardiovascular diseases, pharmaceutical treatment remains suboptimal because of poor pharmacokinetics and high toxicity. However, since being harnessed in the cancer field for the delivery of safer and more effective chemotherapeutics, nanoparticle-based drug delivery systems have offered multiple significant therapeutic effects in treating cardiovascular diseases. Nanoparticle-based drug delivery systems alter the biodistribution of therapeutic agents through site-specific, target-oriented delivery and controlled drug release of precise medicines. Metal-, lipid-, and polymer-based nanoparticles represent ideal materials for use in cardiovascular therapeutics. New developments in the therapeutic potential of drug delivery using nanoparticles and the application of nanomedicine to cardiovascular diseases are described in this review. Furthermore, this review discusses our current understanding of the potential role of nanoparticles in metabolism and toxicity after therapeutic action, with a view to providing a safer and more effective strategy for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Fangyu Yang
- Department of Clinical Laboratory Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jianjiang Xue
- Department of Clinical Laboratory Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Bio-Rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Qizhi Diao
- Department of Clinical Laboratory Medicine, Sanya Women and Children’s Hospital Managed by Shanghai Children’s Medical Center, Hainan, China
- *Correspondence: Qizhi Diao,
| |
Collapse
|
5
|
Dadpour S, Mehrabian A, Arabsalmani M, Mirhadi E, Askarizadeh A, Mashreghi M, Jaafari MR. The role of size in PEGylated liposomal doxorubicin biodistribution and anti-tumour activity. IET Nanobiotechnol 2022; 16:259-272. [PMID: 35983586 PMCID: PMC9469787 DOI: 10.1049/nbt2.12094] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/13/2022] [Accepted: 07/28/2022] [Indexed: 12/19/2022] Open
Abstract
The size of nanoliposome‐encapsulated drugs significantly affects their therapeutic efficacy, biodistribution, targeting ability, and toxicity profile for the cancer treatment. In the present study, the biodistribution and anti‐tumoral activity of PEGylated liposomal Doxorubicin (PLD) formulations with different sizes were investigated. First, 100, 200, and 400 nm PLDs were prepared by remote loading procedure and characterised for their size, zeta potential, encapsulation efficacy, and release properties. Then, in vitro cellular uptake and cytotoxicity were studied by flow cytometry and MTT assay, and compared with commercially available PLD Caelyx®. In vivo studies were applied on BALB/c mice bearing C26 colon carcinoma. The cytotoxicity and cellular uptake tests did not demonstrate any statistically significant differences between PLDs. The biodistribution results showed that Caelyx® and 100 nm liposomal formulations had the most doxorubicin (Dox) accumulation in the tumour tissue and, as a result, considerably suppressed tumour growth compared with 200 and 400 nm PLDs. In contrast, larger nanoparticles (200 and 400 nm formulations) had more accumulation in the liver and spleen. This study revealed that 90 nm Caelyx® biodistribution profile led to the stronger anti‐tumour activity of the drug and hence significant survival extension, and showed the importance of vesicle size in the targeting of nanoparticles to the tumour microenvironment for the treatment of cancer.
Collapse
Affiliation(s)
- Saba Dadpour
- Nanotechnology Research Center, Student Research Committee, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mehrabian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdieh Arabsalmani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Mirhadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anis Askarizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Yang J, Jia C, Yang J. Designing Nanoparticle-based Drug Delivery Systems for Precision Medicine. Int J Med Sci 2021; 18:2943-2949. [PMID: 34220321 PMCID: PMC8241788 DOI: 10.7150/ijms.60874] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Traditional drugs are facing bottlenecks of lower solubility, absorption, and especially the inefficient organs or cells targeting during the precision medicine era. It is urgently needed to discover and establish new methods or strategies to modify old drugs or create new ones against the above defects. With the support of nanotechnology, the solubility, absorption and targeting of traditional drugs were greatly improved by modifying and fabricating with various types of nanoparticles to some extent, though many shortages remain. In this mini-review we will focus on advances in several most commonly used nanoparticles, from their nature and design, to drug delivery system and clinical application, that they overcome heterogeneous barriers in precision medicine, thereby ultimately improve patient outcome overall.
Collapse
Affiliation(s)
- Jianhua Yang
- Department of Orthopaedics, Longgang District People's Hospital, Shenzhen 518172, China
| | - Chengyou Jia
- Shanghai Research Center for Thyroid Diseases, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jianshe Yang
- Shanghai Research Center for Thyroid Diseases, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Health and Life Science College, the Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
7
|
Groo AC, Hedir S, Since M, Brotin E, Weiswald LB, Paysant H, Nee G, Coolzaet M, Goux D, Delépée R, Freret T, Poulain L, Voisin-Chiret AS, Malzert-Fréon A. Pyridoclax-loaded nanoemulsion for enhanced anticancer effect on ovarian cancer. Int J Pharm 2020; 587:119655. [PMID: 32712252 DOI: 10.1016/j.ijpharm.2020.119655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Pyridoclax is an original lead, recently identified as very promising in treatment of chemoresistant ovarian cancers. To correct the unfavorable intrinsic physico-chemical properties of this BCS II drug, a formulation strategy was implied in the drug discovery step. Pyridoclax-loaded nanoemulsions (NEs) were developed to permit its preclinical evaluation. RESULTS The resulting nanoemulsions displayed a mean size of about 100 nm and a high encapsulation efficiency (>95%) at a drug loading of 2 wt%, enabling a 1,000-fold increase of the Pyridoclax apparent solubility. NEs have enabled a sustained release of the drug as assayed by a dialysis bag method. In addition, anti-tumor effects of the Pyridoclax-loaded nanoemulsions (PNEs) showed a 2.5-fold higher activity on chemoresistant ovarian cancer cells than free Pyridoclax. This effect was confirmed by a drastic increase of caspase 3/7 activation from 10 µM PNEs, as newly objectified by real time apoptose imaging. The Pyridoclax bioavailability was kept unchanged after encapsulation in nanoemulsions as determined in a mice model after oral administration. CONCLUSION Thus, NEs should permit valuable Pyridoclax oral administration, and valorization of this promising anticancer drug by maintaining its original anticancer activity, and by reducing the Pyridoclax therapeutic concentration.
Collapse
Affiliation(s)
- A C Groo
- Normandie Univ, UNICAEN, CERMN, 14000 Caen, France.
| | - S Hedir
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE "Interdisciplinary Research Unit for Cancer Prevention and Treatment", 14000 Caen, France; UNICANCER, Cancer Centre F. Baclesse, 14076 Caen, France
| | - M Since
- Normandie Univ, UNICAEN, CERMN, 14000 Caen, France
| | - E Brotin
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE "Interdisciplinary Research Unit for Cancer Prevention and Treatment", 14000 Caen, France; UNICANCER, Cancer Centre F. Baclesse, 14076 Caen, France; Normandie Univ, UNICAEN, SF4206 Icore, ImpedanCELL Platform, 14000 Caen, France
| | - L-B Weiswald
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE "Interdisciplinary Research Unit for Cancer Prevention and Treatment", 14000 Caen, France; UNICANCER, Cancer Centre F. Baclesse, 14076 Caen, France
| | - H Paysant
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE "Interdisciplinary Research Unit for Cancer Prevention and Treatment", 14000 Caen, France; UNICANCER, Cancer Centre F. Baclesse, 14076 Caen, France
| | - G Nee
- Normandie Univ, UNICAEN, Inserm U1075, Comete, GIP CYCERON, 14000 Caen, France
| | - M Coolzaet
- Normandie Univ, UNICAEN, Inserm U1075, Comete, GIP CYCERON, 14000 Caen, France
| | - D Goux
- Normandie Univ, UNICAEN, CMAbio(3), SF4206 Icore, 14000 Caen, France
| | - R Delépée
- Normandie Univ, UNICAEN, PRISMM Platform, SF4206 ICORE, Comprehensive Cancer Center F. Baclesse, 14000 Caen, France
| | - T Freret
- Normandie Univ, UNICAEN, Inserm U1075, Comete, GIP CYCERON, 14000 Caen, France
| | - L Poulain
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE "Interdisciplinary Research Unit for Cancer Prevention and Treatment", 14000 Caen, France; UNICANCER, Cancer Centre F. Baclesse, 14076 Caen, France
| | | | | |
Collapse
|