1
|
Delbreil P, Rabanel JM, Banquy X, Brambilla D. Therapeutic nanotechnologies for Alzheimer's disease: a critical analysis of recent trends and findings. Adv Drug Deliv Rev 2022; 187:114397. [PMID: 35738546 DOI: 10.1016/j.addr.2022.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/01/2022]
Abstract
Alzheimer's Disease (AD) is an irreversible neurodegenerative disease for which no disease modifying therapies are presently available. Besides the identification of pathological targets, AD presents numerous clinical and pharmacological challenges such as efficient active delivery to the central nervous system, cell targeting, and long-term dosing. Nanoparticles have been explored to overcome some of these challenges as drug delivery vehicles or drugs themselves. However, early promises have failed to materialize as no nanotechnology-based product has been able to reach the market and very few have moved past preclinical stages. In this review, we perform a critical analysis of the past decade's research on nanomedicine-based therapies for AD at the preclinical and clinical stages. The main obstacles to nanotechnology products and the most promising approaches were also identified, including renewed promise with gene editing, gene modulation, and vaccines.
Collapse
Affiliation(s)
- Philippe Delbreil
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Jean-Michel Rabanel
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Xavier Banquy
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Davide Brambilla
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
2
|
Pashirova T, Shaihutdinova Z, Mansurova M, Kazakova R, Shambazova D, Bogdanov A, Tatarinov D, Daudé D, Jacquet P, Chabrière E, Masson P. Enzyme Nanoreactor for In Vivo Detoxification of Organophosphates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19241-19252. [PMID: 35440137 DOI: 10.1021/acsami.2c03210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A nanoreactor containing an evolved mutant of Saccharolobus solfataricus phosphotriesterase (L72C/Y97F/Y99F/W263V/I280T) as a catalytic bioscavenger was made for detoxification of organophosphates. This nanoreactor intended for treatment of organophosphate poisoning was studied against paraoxon (POX). Nanoreactors were low polydispersity polymersomes containing a high concentration of enzyme (20 μM). The polyethylene glycol-polypropylene sulfide membrane allowed for penetration of POX and exit of hydrolysis products. In vitro simulations under second order conditions showed that 1 μM enzyme inactivates 5 μM POX in less than 10 s. LD50-shift experiments of POX-challenged mice through intraperitoneal (i.p.) and subcutaneous (s.c.) injections showed that intravenous administration of nanoreactors (1.6 nmol enzyme) protected against 7 × LD50 i.p. in prophylaxis and 3.3 × LD50 i.p. in post-exposure treatment. For mice s.c.-challenged, LD50 shifts were more pronounced: 16.6 × LD50 in prophylaxis and 9.8 × LD50 in post-exposure treatment. Rotarod tests showed that transitory impaired neuromuscular functions of challenged mice were restored the day of experiments. No deterioration was observed in the following days and weeks. The high therapeutic index provided by prophylactic administration of enzyme nanoreactors suggests that no other drugs are needed for protection against acute POX toxicity. For post-exposure treatment, co-administration of classical drugs would certainly have beneficial effects against transient incapacitation.
Collapse
Affiliation(s)
- Tatiana Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russian Federation
| | - Zukhra Shaihutdinova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russian Federation
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420111, Russian Federation
| | - Milana Mansurova
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420111, Russian Federation
| | - Renata Kazakova
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420111, Russian Federation
| | - Dinara Shambazova
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420111, Russian Federation
| | - Andrei Bogdanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russian Federation
| | - Dmitry Tatarinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russian Federation
| | - David Daudé
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Pauline Jacquet
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Eric Chabrière
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- Aix Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Patrick Masson
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420111, Russian Federation
| |
Collapse
|
3
|
Zhang F, Wen L, Wang K, Huang Z, Jin X, Xiong R, He S, Hu F. Effect of axitinib regulating the pathological blood-brain barrier functional recovery for glioblastoma therapeutics. CNS Neurosci Ther 2021; 28:411-421. [PMID: 34967104 PMCID: PMC8841308 DOI: 10.1111/cns.13788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/11/2021] [Accepted: 12/01/2021] [Indexed: 11/01/2022] Open
Abstract
AIMS Dysfunction of the blood-brain barrier (BBB) is a prominent pathological feature of glioblastoma (GBM). Vascular endothelial growth factor (VEGF) is confirmed to be abnormally elevated in the pathogenesis of GBM, causing BBB pathological disruption, which further allows the leakage of neurotoxic blood-derived molecules into the central nervous system (CNS), interfering brain homeostasis and leading to poor patient outcome. Since BBB is an integral and pivotal part of the brain microenvironment, which strongly supports the occurrence and the pathological progression of GBM, here we have selected the VEGFR antagonist axitinib as a BBB functional regulator and hypothesized to regulate pathological BBB restoration for GBM effective treatment. METHODS The pathological BBB cell model was constructed to investigate the timeliness and dose effect of axitinib regulating pathological BBB restoration. In order to investigate the efficacy and safety of axitinib regulating pathological BBB restoration for anti-GBM treatment, the orthotropic GBM-bearing mice model was established for in vivo study, and bioluminescent imaging was used to real-time and noninvasively monitor tumor growth response in vivo, and survival time was also recorded. RESULTS Axitinib under non-cytotoxic dosage regulated pathological BBB restoration in a time-dependent mode, and multiple intervention of axitinib could realize a visible restoration of pathological BBB in vitro. Moreover, axitinib treatment restored pathological BBB in orthotropic GBM-bearing mice. We further confirmed that functional restoration of pathological BBB with axitinib had certain curative effect in prolonging median survival of orthotropic GBM-bearing mice at non-cytotoxic dosages in vivo. CONCLUSION The mechanism of axitinib involved in BBB functional regulation in the treatment of GBM is first illuminated in this report; moreover, this is the first report first referring to regulating pathological BBB functional recovery for GBM effective therapeutics. Overall, the view of regulating pathological BBB functional recovery may offer a novel sight for other CNS diseases relating to BBB permeability effective therapeutics.
Collapse
Affiliation(s)
- Fengtian Zhang
- Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, China.,Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lijuan Wen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,National Engineering Research Center for Modernization of Tranditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Kai Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhihua Huang
- Department of Physiology, School of Basic Medical Sciences, Institute for Medical Sciences of Pain, Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Xiangyu Jin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ruiwen Xiong
- National Engineering Research Center for Modernization of Tranditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Shiying He
- National Engineering Research Center for Modernization of Tranditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Thangam R, Paulmurugan R, Kang H. Functionalized Nanomaterials as Tailored Theranostic Agents in Brain Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:18. [PMID: 35009968 PMCID: PMC8746658 DOI: 10.3390/nano12010018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022]
Abstract
Functionalized nanomaterials of various categories are essential for developing cancer nano-theranostics for brain diseases; however, some limitations exist in their effectiveness and clinical translation, such as toxicity, limited tumor penetration, and inability to cross blood-brain and blood-tumor barriers. Metal nanomaterials with functional fluorescent tags possess unique properties in improving their functional properties, including surface plasmon resonance (SPR), superparamagnetism, and photo/bioluminescence, which facilitates imaging applications in addition to their deliveries. Moreover, these multifunctional nanomaterials could be synthesized through various chemical modifications on their physical surfaces via attaching targeting peptides, fluorophores, and quantum dots (QD), which could improve the application of these nanomaterials by facilitating theranostic modalities. In addition to their inherent CT (Computed Tomography), MRI (Magnetic Resonance Imaging), PAI (Photo-acoustic imaging), and X-ray contrast imaging, various multifunctional nanoparticles with imaging probes serve as brain-targeted imaging candidates in several imaging modalities. The primary criteria of these functional nanomaterials for translational application to the brain must be zero toxicity. Moreover, the beneficial aspects of nano-theranostics of nanoparticles are their multifunctional systems proportioned towards personalized disease management via comprising diagnostic and therapeutic abilities in a single biodegradable nanomaterial. This review highlights the emerging aspects of engineered nanomaterials to reach and deliver therapeutics to the brain and how to improve this by adopting the imaging modalities for theranostic applications.
Collapse
Affiliation(s)
- Ramar Thangam
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
- Department of Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea
| |
Collapse
|
5
|
Nanoparticle shell structural cues drive in vitro transport properties, tissue distribution and brain accessibility in zebrafish. Biomaterials 2021; 277:121085. [PMID: 34461457 DOI: 10.1016/j.biomaterials.2021.121085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/26/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023]
Abstract
Zwitterion polymers with strong antifouling properties have been suggested as the prime alternative to polyethylene glycol (PEG) for drug nanocarriers surface coating. It is believed that PEG coating shortcomings, such as immune responses and incomplete protein repellency, could be overcome by zwitterionic polymers. However, no systematic study has been conducted so far to complete a comparative appraisal of PEG and zwitterionic-coating effects on nanoparticles (NPs) stealthness, cell uptake, cell barrier translocation and biodistribution in the context of nanocarriers brain targeting. Core-shell polymeric particles with identical cores and a shell of either PEG or poly(2-methacryloyloxyethyl phosphorylcholine (PMPC) were prepared by impinging jet mixer nanoprecipitation. NPs with similar size and surface potential were systematically compared using in vitro and in vivo assays. NPs behavior differences were rationalized based on their protein-particles interactions. PMPC-coated NPs were significantly more endocytosed by mouse macrophages or brain resident macrophages compared to PEGylated NPs but exhibited the remarkable ability to cross the blood-brain barrier in in vitro models. Nanoscale flow cytometry assays showed significantly more adsorbed proteins on PMPC-coated NPs than PEG-coated NPs. In vivo, distribution in zebrafish larvae, showed a strong propensity for PMPC-coated NPs to adhere to the vascular endothelium, while PEG-coated NPs were able to circulate for a longer time and escape the bloodstream to penetrate deep into the cerebral tissue. The stark differences between these two types of particles, besides their similarities in size and surface potential, points towards the paramount role of surface chemistry in controlling NPs fate likely via the formation of distinct protein corona for each coating.
Collapse
|
6
|
Low LE, Wang Q, Chen Y, Lin P, Yang S, Gong L, Lee J, Siva SP, Goh BH, Li F, Ling D. Microenvironment-tailored nanoassemblies for the diagnosis and therapy of neurodegenerative diseases. NANOSCALE 2021; 13:10197-10238. [PMID: 34027535 DOI: 10.1039/d1nr02127c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Neurodegenerative disorder is an illness involving neural dysfunction/death attributed to complex pathological processes, which eventually lead to the mortality of the host. It is generally recognized through features such as mitochondrial dysfunction, protein aggregation, oxidative stress, metal ions dyshomeostasis, membrane potential change, neuroinflammation and neurotransmitter impairment. The aforementioned neuronal dysregulations result in the formation of a complex neurodegenerative microenvironment (NME), and may interact with each other, hindering the performance of therapeutics for neurodegenerative disease (ND). Recently, smart nanoassemblies prepared from functional nanoparticles, which possess the ability to interfere with different NME factors, have shown great promise to enhance the diagnostic and therapeutic efficacy of NDs. Herein, this review highlights the recent advances of stimuli-responsive nanoassemblies that can effectively combat the NME for the management of ND. The first section outlined the NME properties and their interrelations that are exploitable for nanoscale targeting. The discussion is then extended to the controlled assembly of functional nanoparticles for the construction of stimuli-responsive nanoassemblies. Further, the applications of stimuli-responsive nanoassemblies for the enhanced diagnosis and therapy of ND are introduced. Finally, perspectives on the future development of NME-tailored nanomedicines are given.
Collapse
Affiliation(s)
- Liang Ee Low
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Qiyue Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Peihua Lin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shengfei Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Linji Gong
- National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Sangeetaprivya P Siva
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Bey-Hing Goh
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China and National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China and Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|