1
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
2
|
Li Y, Wang X, Gao Y, Zhang Z, Liu T, Zhang Z, Wang Y, Chang F, Yang M. Hyaluronic acid-coated polypeptide nanogel enhances specific distribution and therapy of tacrolimus in rheumatoid arthritis. J Nanobiotechnology 2024; 22:547. [PMID: 39238027 PMCID: PMC11378632 DOI: 10.1186/s12951-024-02784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024] Open
Abstract
Rheumatoid arthritis (RA) involves chronic inflammation, oxidative stress, and complex immune cell interactions, leading to joint destruction. Traditional treatments are often limited by off-target effects and systemic toxicity. This study introduces a novel therapeutic approach using hyaluronic acid (HA)-conjugated, redox-responsive polyamino acid nanogels (HA-NG) to deliver tacrolimus (TAC) specifically to inflamed joints. The nanogels' disulfide bonds enable controlled TAC release in response to high intracellular glutathione (GSH) levels in activated macrophages, prevalent in RA-affected tissues. In vitro results demonstrated that HA-NG/TAC significantly reduced TAC toxicity to normal macrophages and showed high biocompatibility. In vivo, HA-NG/TAC accumulated more in inflamed joints compared to non-targeted NG/TAC, enhancing therapeutic efficacy and minimizing side effects. Therapeutic evaluation in collagen-induced arthritis (CIA) mice revealed HA-NG/TAC substantially reduced paw swelling, arthritis scores, synovial inflammation, and bone erosion while suppressing pro-inflammatory cytokine levels. These findings suggest that HA-NG/TAC represents a promising targeted drug delivery system for RA, offering potential for more effective and safer clinical applications.
Collapse
Affiliation(s)
- Yuhuan Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Xin Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Yu Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Ziyi Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Yibin Jilin University Research Institute, Jilin University, Yibin, Sichuan, China
| | - Zhuo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Yinan Wang
- Department of Biobank, Division of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China.
| | - Modi Yang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China.
| |
Collapse
|
3
|
Ren S, Xu Y, Dong X, Mu Q, Chen X, Yu Y, Su G. Nanotechnology-empowered combination therapy for rheumatoid arthritis: principles, strategies, and challenges. J Nanobiotechnology 2024; 22:431. [PMID: 39034407 PMCID: PMC11265020 DOI: 10.1186/s12951-024-02670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with multifactorial etiology and intricate pathogenesis. In RA, repeated monotherapy is frequently associated with inadequate efficacy, drug resistance, and severe side effects. Therefore, a shift has occurred in clinical practice toward combination therapy. However, conventional combination therapy encounters several hindrances, including low selectivity to arthritic joints, short half-lives, and varying pharmacokinetics among coupled drugs. Emerging nanotechnology offers an incomparable opportunity for developing advanced combination therapy against RA. First, it allows for co-delivering multiple drugs with augmented physicochemical properties, targeted delivery capabilities, and controlled release profiles. Second, it enables therapeutic nanomaterials development, thereby expanding combination regimens to include multifunctional nanomedicines. Lastly, it facilitates the construction of all-in-one nanoplatforms assembled with multiple modalities, such as phototherapy, sonodynamic therapy, and imaging. Thus, nanotechnology offers a promising solution to the current bottleneck in both RA treatment and diagnosis. This review summarizes the rationale, advantages, and recent advances in nano-empowered combination therapy for RA. It also discusses safety considerations, drug-drug interactions, and the potential for clinical translation. Additionally, it provides design tips and an outlook on future developments in nano-empowered combination therapy. The objective of this review is to achieve a comprehensive understanding of the mechanisms underlying combination therapy for RA and unlock the maximum potential of nanotechnology, thereby facilitating the smooth transition of research findings from the laboratory to clinical practice.
Collapse
Affiliation(s)
- Shujing Ren
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, Nantong, 226000, PR China
| | - Yuhang Xu
- School of Pharmacy, Nantong University, Nantong, 226000, PR China
| | - Xingpeng Dong
- School of Pharmacy, Nantong University, Nantong, 226000, PR China
| | - Qingxin Mu
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
| | - Xia Chen
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, Nantong, 226000, PR China.
| | - Yanyan Yu
- School of Pharmacy, Nantong University, Nantong, 226000, PR China.
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, 226000, PR China.
| |
Collapse
|
4
|
Adams F, Zimmermann CM, Baldassi D, Pehl TM. Pulmonary siRNA Delivery with Sophisticated Amphiphilic Poly(Spermine Acrylamides) for the Treatment of Lung Fibrosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308775. [PMID: 38126895 PMCID: PMC7616748 DOI: 10.1002/smll.202308775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Indexed: 12/23/2023]
Abstract
RNA interference (RNAi) is an efficient strategy to post-transcriptionally silence gene expression. While all siRNA drugs on the market target the liver, the lung offers a variety of currently undruggable targets, which can potentially be treated with RNA therapeutics. To achieve this goal, the synthesis of poly(spermine acrylamides) (P(SpAA) is reported herein. Polymers are prepared via polymerization of N-acryloxysuccinimide (NAS) and afterward this active ester is converted into spermine-based pendant groups. Copolymerizations with decylacrylamide are employed to increase the hydrophobicity of the polymers. After deprotection, polymers show excellent siRNA encapsulation to obtain perfectly sized polyplexes at very low polymer/RNA ratios. In vitro 2D and 3D cell culture, ex vivo and in vivo experiments reveal superior properties of amphiphilic spermine-copolymers with respect to delivery of siRNA to lung cells in comparison to commonly used lipid-based transfection agents. In line with the in vitro results, siRNA delivery to human lung explants confirm more efficient gene silencing of protease-activated receptor 2 (PAR2), a G protein-coupled receptor involved in fibrosis. This study reveals the importance of the balance between efficient polyplex formation, cellular uptake, gene knockdown, and toxicity for efficient siRNA delivery in vitro, in vivo, and in fibrotic human lung tissue ex vivo.
Collapse
Affiliation(s)
- Friederike Adams
- Pharmaceutical Technology and Biopharmaceutics, Department Pharmacy Ludwig-Maximilians-University Munich, Butenandtstr. 5−13, 81377Munich, Germany
- Institute of Polymer Chemistry Chair of Macromolecular Materials and Fiber Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569Stuttgart, Germany
- Center for Ophthalmology University Eye Hospital Tübingen, Elfriede-Aulhorn-Straße 7, 72076 Tübingen, Germany
| | | | - Domizia Baldassi
- Pharmaceutical Technology and Biopharmaceutics, Department Pharmacy Ludwig-Maximilians-University Munich, Butenandtstr. 5−13, 81377Munich, Germany
| | - Thomas M. Pehl
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Department of Chemistry, Technical University Munich, Lichtenbergstr. 4, 85748Garching bei München, Germany
| |
Collapse
|
5
|
Zhang HQ, Sun C, Xu N, Liu W. The current landscape of the antimicrobial peptide melittin and its therapeutic potential. Front Immunol 2024; 15:1326033. [PMID: 38318188 PMCID: PMC10838977 DOI: 10.3389/fimmu.2024.1326033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Melittin, a main component of bee venom, is a cationic amphiphilic peptide with a linear α-helix structure. It has been reported that melittin can exert pharmacological effects, such as antitumor, antiviral and anti-inflammatory effects in vitro and in vivo. In particular, melittin may be beneficial for the treatment of diseases for which no specific clinical therapeutic agents exist. Melittin can effectively enhance the therapeutic properties of some first-line drugs. Elucidating the mechanism underlying melittin-mediated biological function can provide valuable insights for the application of melittin in disease intervention. However, in melittin, the positively charged amino acids enables it to directly punching holes in cell membranes. The hemolysis in red cells and the cytotoxicity triggered by melittin limit its applications. Melittin-based nanomodification, immuno-conjugation, structural regulation and gene technology strategies have been demonstrated to enhance the specificity, reduce the cytotoxicity and limit the off-target cytolysis of melittin, which suggests the potential of melittin to be used clinically. This article summarizes research progress on antiviral, antitumor and anti-inflammatory properties of melittin, and discusses the strategies of melittin-modification for its future potential clinical applications in preventing drug resistance, enhancing the selectivity to target cells and alleviating cytotoxic effects to normal cells.
Collapse
Affiliation(s)
- Hai-Qian Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Chengbiao Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Na Xu
- Academic Affairs Office, Jilin Medical University, Jilin, Jilin, China
| | - Wensen Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| |
Collapse
|
6
|
Afrasiabi S, Chiniforush N, Partoazar A, Goudarzi R. The role of bacterial infections in rheumatoid arthritis development and novel therapeutic interventions: Focus on oral infections. J Clin Lab Anal 2023:e24897. [PMID: 37225674 DOI: 10.1002/jcla.24897] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) represents a primary public health challenge, which is a major source of pain, disability, and socioeconomic effects worldwide. Several factors contribute to its pathogenesis. Infections are an important concern in RA patients, which play a key role in mortality risk. Despite major advances in the clinical treatment of RA, long-term use of disease-modifying anti-rheumatic drugs can cause serious adverse effects. Therefore, effective strategies for developing novel prevention and RA-modifying therapeutic interventions are sorely needed. OBJECTIVE This review investigates the available evidence on the interplay between various bacterial infections, particularly oral infections and RA, and focuses on some potential interventions such as probiotics, photodynamic therapy, nanotechnology, and siRNA that can have therapeutic effects.
Collapse
Affiliation(s)
- Shima Afrasiabi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Chiniforush
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Goudarzi
- Division of Research and Development, Pharmin USA, LLC, San Jose, California, USA
| |
Collapse
|
7
|
Zhang X, Liu Y, Xiao C, Guan Y, Gao Z, Huang W. Research Advances in Nucleic Acid Delivery System for Rheumatoid Arthritis Therapy. Pharmaceutics 2023; 15:1237. [PMID: 37111722 PMCID: PMC10145518 DOI: 10.3390/pharmaceutics15041237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that affects the lives of nearly 1% of the total population worldwide. With the understanding of RA, more and more therapeutic drugs have been developed. However, lots of them possess severe side effects, and gene therapy may be a potential method for RA treatment. A nanoparticle delivery system is vital for gene therapy, as it can keep the nucleic acids stable and enhance the efficiency of transfection in vivo. With the development of materials science, pharmaceutics and pathology, more novel nanomaterials and intelligent strategies are applied to better and safer gene therapy for RA. In this review, we first summarized the existing nanomaterials and active targeting ligands used for RA gene therapy. Then, we introduced various gene delivery systems for RA treatment, which may enlighten the relevant research in the future.
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Congcong Xiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Youyan Guan
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China;
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (Y.L.); (C.X.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
8
|
Zhao C, Zhang R, Liu S, Li X, Sun D, Jiang Y, Yang M. Photoacoustic/ultrasound-guided gene silencing: Multifunctional microbubbles for treating adjuvant-induced arthritis. Int Immunopharmacol 2023; 117:109978. [PMID: 37012868 DOI: 10.1016/j.intimp.2023.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/05/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023]
Abstract
AIMS To effectively deliver small interfering RNA (siRNA) to inflammatory tissues for treating rheumatoid arthritis (RA), we developed the multifunctional microbubbles (MBs) to perform photoacoustic/ultrasound-guided gene silencing. METHODS Fluorescein amidite (FAM)-labelled tumour necrosis factor-α (TNF-α)-siRNA and cationic MBs were mixed to fabricate FAM-TNF-α-siRNA-cMBs. The cell transfection efficacy of FAM-TNF-α-siRNA-cMBs was evaluated in vitro on RAW264.7 cells. Subsequently, wistar rats with adjuvant-induced arthritis (AIA) were injected intravenously with MBs and simultaneously subjected to low-frequency ultrasound for ultrasound-targeted microbubble destruction (UTMD). Photoacoustic imaging (PAI) was utilized to visualize the distribution of siRNA. And the clinical and pathological changes of AIA rats was estimated. RESULTS FAM-TNF-α-siRNA-cMBs were evenly distributed within the RAW264.7 cells and significantly reduced TNF-α mRNA levels of the cells. For AIA rats, the entering and collapsing of MBs was visualized by contrast-enhanced ultrasound (CEUS). Photoacoustic imaging showed markedly enhanced signals following injection, indicating localization of the FAM-labelled siRNA. The articular tissues of the AIA rats treated with TNF-α-siRNA-cMBs and UTMD showed decreased TNF-α expression levels. CONCLUSIONS The theranostic MBs exhibited a TNF-α gene silencing effect under the guidance of CEUS and PAI. The theranostic MBs served as vehicles for delivering siRNA as well as contrast agents for CEUS and PAI.
Collapse
Affiliation(s)
- Chenyang Zhao
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Ultrasonography, Peking University Shenzhen hospital, Shenzhen, China
| | - Rui Zhang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sirui Liu
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuelan Li
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Desheng Sun
- Department of Ultrasonography, Peking University Shenzhen hospital, Shenzhen, China
| | - Yuxin Jiang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Yang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Dong C, Tan G, Zhang G, Lin W, Wang G. The function of immunomodulation and biomaterials for scaffold in the process of bone defect repair: A review. Front Bioeng Biotechnol 2023; 11:1133995. [PMID: 37064239 PMCID: PMC10090379 DOI: 10.3389/fbioe.2023.1133995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
The process of bone regeneration involves the interaction of the skeletal, blood, and immune systems. Bone provides a solid barrier for the origin and development of immune cells in the bone marrow. At the same time, immune cells secrete related factors to feedback on the remodeling of the skeletal system. Pathological or traumatic injury of bone tissue involves changes in blood supply, cell behavior, and cytokine expression. Immune cells and their factors play an essential role in repairing foreign bodies in bone injury or implantation of biomaterials, the clearance of dead cells, and the regeneration of bone tissue. This article reviews the bone regeneration application of the bone tissue repair microenvironment in bone cells and immune cells in the bone marrow and the interaction of materials and immune cells.
Collapse
Affiliation(s)
- Changchao Dong
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Orthopedics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gang Tan
- Department of Orthopedics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangyan Zhang
- Department of Respiratory Medicine, The 7th Hospital of Chengdu, Chengdu, Sichuan, China
| | - Wei Lin
- Department of Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Wei Lin, ; Guanglin Wang,
| | - Guanglin Wang
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Orthopedics, West China Hospital, Orthopedics Research Institute, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Wei Lin, ; Guanglin Wang,
| |
Collapse
|
10
|
Han Y, Huang S. Nanomedicine is more than a supporting role in rheumatoid arthritis therapy. J Control Release 2023; 356:142-161. [PMID: 36863691 DOI: 10.1016/j.jconrel.2023.02.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Rheumatoid arthritis(RA) is an autoimmune disorder that affects the joints. Various medications successfully alleviate the symptoms of RA in clinical. Still, few therapy strategies can cure RA, especially when joint destruction begins, and there is currently no effective bone-protective treatment to reverse the articular damage. Furthermore, the RA medications now used in clinical practice accompany various adverse side effects. Nanotechnology can improve the pharmacokinetics of traditional anti-RA drugs and therapeutic precision through targeting modification. Although the clinical application of nanomedicines for RA is in its infancy, preclinical research is rising. Current anti-RA nano-drug studies mainly focus on the following: drug delivery systems, nanomedicines with anti-inflammatory and anti-arthritic properties, biomimetic design with better biocompatibility and therapeutic features, and nanoparticle-dominated energy conversion therapies. These therapies have shown promising therapeutic benefits in animal models, indicating that nanomedicines are a potential solution to the current bottleneck in RA treatment. This review will summarize the present state of anti-RA nano-drug research.
Collapse
Affiliation(s)
- Yu Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Shilei Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
11
|
Zhang ZJ, Hou YK, Chen MW, Yu XZ, Chen SY, Yue YR, Guo XT, Chen JX, Zhou Q. A pH-responsive metal-organic framework for the co-delivery of HIF-2α siRNA and curcumin for enhanced therapy of osteoarthritis. J Nanobiotechnology 2023; 21:18. [PMID: 36650517 PMCID: PMC9847079 DOI: 10.1186/s12951-022-01758-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
The occurrence of osteoarthritis (OA) is highly correlated with the reduction of joint lubrication performance, in which persistent excessive inflammation and irreversible destruction of cartilage dominate the mechanism. The inadequate response to monotherapy methods, suboptimal efficacy caused by undesirable bioavailability, short retention, and lack of stimulus-responsiveness, are few unresolved issues. Herein, we report a pH-responsive metal-organic framework (MOF), namely, MIL-101-NH2, for the co-delivery of anti-inflammatory drug curcumin (CCM) and small interfering RNA (siRNA) for hypoxia inducible factor (HIF-2α). CCM and siRNA were loaded via encapsulation and surface coordination ability of MIL-101-NH2. Our vitro tests showed that MIL-101-NH2 protected siRNA from nuclease degradation by lysosomal escape. The pH-responsive MIL-101-NH2 gradually collapsed in an acidic OA microenvironment to release the CCM payloads to down-regulate the level of pro-inflammatory cytokines, and to release the siRNA payloads to cleave the target HIF-2α mRNA for gene-silencing therapy, ultimately exhibiting the synergetic therapeutic efficacy by silencing HIF-2α genes accompanied by inhibiting the inflammation response and cartilage degeneration of OA. The hybrid material reported herein exhibited promising potential performance for OA therapy as supported by both in vitro and in vivo studies and may offer an efficacious therapeutic strategy for OA utilizing MOFs as host materials.
Collapse
Affiliation(s)
- Zi-Jian Zhang
- grid.284723.80000 0000 8877 7471Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630 Guangdong People’s Republic of China
| | - Ying-Ke Hou
- grid.284723.80000 0000 8877 7471Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630 Guangdong People’s Republic of China
| | - Ming-Wa Chen
- grid.284723.80000 0000 8877 7471NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515 People’s Republic of China
| | - Xue-Zhao Yu
- grid.284723.80000 0000 8877 7471Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630 Guangdong People’s Republic of China
| | - Si-Yu Chen
- grid.284723.80000 0000 8877 7471Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630 Guangdong People’s Republic of China
| | - Ya-Ru Yue
- grid.284723.80000 0000 8877 7471Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630 Guangdong People’s Republic of China
| | - Xiong-Tian Guo
- grid.284723.80000 0000 8877 7471Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630 Guangdong People’s Republic of China
| | - Jin-Xiang Chen
- grid.284723.80000 0000 8877 7471NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515 People’s Republic of China
| | - Quan Zhou
- grid.284723.80000 0000 8877 7471Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630 Guangdong People’s Republic of China
| |
Collapse
|
12
|
Inflammation-responsive nanoparticles suppress lymphatic clearance for prolonged arthritis therapy. J Control Release 2022; 352:700-711. [PMID: 36347402 DOI: 10.1016/j.jconrel.2022.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
The clearance of nanomedicine in inflamed joints has been accelerated due to the increased lymph angiogenesis and lymph flow in arthritic sites. To maximize the therapeutic efficacy for rheumatoid arthritis (RA), it is necessary to facilitate targeted delivery and extended drug retention in inflamed synovium simultaneously. In general, nanosized particles are more likely to achieve prolonged circulation and targeted delivery. While drug carriers with larger dimension might be more beneficial for extending drug retention. To balance the conflicting requirements, an inflammation-responsive shape transformable nanoparticle, comprised of amyloid β-derived KLVFF peptide and polysialic acid (PSA), coupled with therapeutic agent dexamethasone (Dex) via an acid-sensitive linker, was fabricated and termed as Dex-KLVFF-PSA (DKPNPs). Under physiological condition, DKPNPs can keep stable nanosized morphology, and PSA shell could endow DKPNPs with long circulation and active targeting to arthritic sites. While in inflamed joints, acidic pH-triggered Dex dissociation or macrophages-induced specific binding with PSA would induce the re-assembly of DKPNPs from nanoparticles to nanofibers. Our results reveal that intravenously injected DKPNPs display prolonged in vivo circulation and preferential distribution in inflamed joints, where DKPNPs undergo shape transition to fibrous structures, leading to declined lymphatic clearance and prolonged efficacy. Overall, our dual-stimulus responsive transformable nanoparticle offers an intelligent solution to achieve enhanced therapeutic efficacy in RA.
Collapse
|
13
|
Pathade V, Nene S, Ratnam S, Khatri DK, Raghuvanshi RS, Singh SB, Srivastava S. Emerging insights of peptide-based nanotherapeutics for effective management of rheumatoid arthritis. Life Sci 2022; 312:121257. [PMID: 36462722 DOI: 10.1016/j.lfs.2022.121257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, prevalent, immune-mediated, inflammatory, joint disorder affecting millions of people worldwide. Despite current treatment options, many patients remain unable to achieve remission and suffer from comorbidities. Because of several comorbidities as well as its chronic nature, it diminishes the quality of patients' life and intensifies socioeconomic cargo. Consolidating peptides with immensely effective drug delivery systems has the ability to alleviate adverse effects associated with conventional treatments. Peptides are widely used as targeting moieties for the delivery of nanotherapeutics. The use of novel peptide-based nanotherapeutics may open up new avenues for improving efficacy by promoting drug accumulation in inflamed joints and reducing off-target cytotoxicity. Peptide therapeutics have grabbed significant attention due to their advantages over small drug molecules as well as complex targeting moieties. In light of this, the market for peptide-based medications is growing exponentially. Peptides can provide the versatility required for the successful delivery of drugs due to their structural diversity and their capability to lead drugs at the site of inflammation while maintaining optimum therapeutic efficacy. This comprehensive review aims to provide an enhanced understanding of recent advancements in the arena of peptide-based nanotherapeutics to strengthen targeted delivery for the effective management of rheumatoid arthritis. Additionally, various peptides having therapeutic roles in rheumatoid arthritis are summarized along with regulatory considerations for peptides.
Collapse
Affiliation(s)
- Vrushali Pathade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shweta Nene
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shreya Ratnam
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
14
|
Nano-Based Co-Delivery System for Treatment of Rheumatoid Arthritis. Molecules 2022; 27:molecules27185973. [PMID: 36144709 PMCID: PMC9503141 DOI: 10.3390/molecules27185973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
A systemic autoimmune condition known as rheumatoid arthritis (RA) has a significant impact on patients’ quality of life. Given the complexity of RA’s biology, no single treatment can totally block the disease’s progression. The combined use of co-delivery regimens integrating various diverse mechanisms has been widely acknowledged as a way to make up for the drawbacks of single therapy. These days, co-delivery systems have been frequently utilized for co-treatment, getting over drug limitations, imaging of inflammatory areas, and inducing reactions. Various small molecules, nucleic acid drugs, and enzyme-like agents intended for co-delivery are frequently capable of producing the ability to require positive outcomes. In addition, the excellent response effect of phototherapeutic agents has led to their frequent use for delivery together with chemotherapeutics. In this review, we discuss different types of nano-based co-delivery systems and their advantages, limitations, and future directions. In addition, we review the prospects and predicted challenges for the combining of phototherapeutic agents with conventional drugs, hoping to provide some theoretical support for future in-depth studies of nano-based co-delivery systems and phototherapeutic agents.
Collapse
|
15
|
Ko CN, Zang S, Zhou Y, Zhong Z, Yang C. Nanocarriers for effective delivery: modulation of innate immunity for the management of infections and the associated complications. J Nanobiotechnology 2022; 20:380. [PMID: 35986268 PMCID: PMC9388998 DOI: 10.1186/s12951-022-01582-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is the first line of defense against invading pathogens. Innate immune cells can recognize invading pathogens through recognizing pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs). The recognition of PAMPs by PRRs triggers immune defense mechanisms and the secretion of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. However, sustained and overwhelming activation of immune system may disrupt immune homeostasis and contribute to inflammatory disorders. Immunomodulators targeting PRRs may be beneficial to treat infectious diseases and their associated complications. However, therapeutic performances of immunomodulators can be negatively affected by (1) high immune-mediated toxicity, (2) poor solubility and (3) bioactivity loss after long circulation. Recently, nanocarriers have emerged as a very promising tool to overcome these obstacles owning to their unique properties such as sustained circulation, desired bio-distribution, and preferred pharmacokinetic and pharmacodynamic profiles. In this review, we aim to provide an up-to-date overview on the strategies and applications of nanocarrier-assisted innate immune modulation for the management of infections and their associated complications. We first summarize examples of important innate immune modulators. The types of nanomaterials available for drug delivery, as well as their applications for the delivery of immunomodulatory drugs and vaccine adjuvants are also discussed.
Collapse
|
16
|
Puri A, Ibrahim F, O'Reilly Beringhs A, Isemann C, Zakrevsky P, Whittenburg A, Hargrove D, Kanai T, Dillard RS, de Val N, Nantz MH, Lu X, Shapiro BA. Stealth oxime ether lipid vesicles promote delivery of functional DsiRNA in human lung cancer A549 tumor bearing mouse xenografts. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 44:102572. [PMID: 35671983 PMCID: PMC9427711 DOI: 10.1016/j.nano.2022.102572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022]
Abstract
We previously reported that hydroxylated oxime ether lipids (OELs) efficiently deliver functional Dicer substrate siRNAs (DsiRNAs) in cells. Here, we explored in vivo utility of these OELs, using OEL4 as a prototype and report that surface modification of the OEL4 formulations was essential for their in vivo applications. These surface-modified OEL4 formulations were developed by inclusion of various PEGylated lipids. The vesicle stability and gene knock-down were dependent on the PEG chain length. OEL4 containing DSPE-PEG350 and DSPE-PEG1000 (surprisingly not DSPE2000) promoted gene silencing in cells. In vivo studies demonstrated that OEL4 vesicles formulated using 3 mol% DSPE-PEG350 accumulate in human lung cancer (A549-luc2) xenografts in mice and exhibit a significant increase in tumor to liver ratios. These vesicles also showed a statistically significant reduction of luciferase signal in tumors compared to untreated mice. Taken together, the scalable OEL4:DSPE-PEG350 formulation serves as a novel candidate for delivery of RNAi therapeutics.
Collapse
Affiliation(s)
- Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory, NCI-NIH, Frederick, MD, United States of America.
| | - Faisal Ibrahim
- RNA Structure and Design Section, RNA Biology Laboratory, NCI-NIH, Frederick, MD, United States of America; Department of Chemistry, University of Louisville, Louisville, KY, United States of America
| | | | - Camryn Isemann
- RNA Structure and Design Section, RNA Biology Laboratory, NCI-NIH, Frederick, MD, United States of America
| | - Paul Zakrevsky
- RNA Structure and Design Section, RNA Biology Laboratory, NCI-NIH, Frederick, MD, United States of America
| | - Abigail Whittenburg
- RNA Structure and Design Section, RNA Biology Laboratory, NCI-NIH, Frederick, MD, United States of America
| | - Derek Hargrove
- School of Pharmacy, University of Connecticut, Storrs, CT, United States of America
| | - Tapan Kanai
- Centre for Molecular Microscopy, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD, United States of America
| | - Rebecca S Dillard
- Centre for Molecular Microscopy, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD, United States of America
| | - Natalia de Val
- Centre for Molecular Microscopy, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD, United States of America
| | - Michael H Nantz
- Department of Chemistry, University of Louisville, Louisville, KY, United States of America
| | - Xiuling Lu
- School of Pharmacy, University of Connecticut, Storrs, CT, United States of America
| | - Bruce A Shapiro
- RNA Structure and Design Section, RNA Biology Laboratory, NCI-NIH, Frederick, MD, United States of America.
| |
Collapse
|
17
|
Chen X, Zhou B, Gao Y, Wang K, Wu J, Shuai M, Men K, Duan X. Efficient Treatment of Rheumatoid Arthritis by Degradable LPCE Nano-Conjugate-Delivered p65 siRNA. Pharmaceutics 2022; 14:pharmaceutics14010162. [PMID: 35057057 PMCID: PMC8780552 DOI: 10.3390/pharmaceutics14010162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases worldwide, causing severe cartilage damage and disability. Despite the recent progress made in RA treatment, limitations remain in achieving early and efficient therapeutic intervention. Advanced therapeutic strategies are in high demand, and siRNA-based therapeutic technology with a gene-silencing ability represents a new approach for RA treatment. In this study, we created a cationic delivery micelle consisting of low-molecular-weight (LMW) polyethylenimine (PEI)–cholesterol–polyethylene glycol (PEG) (LPCE) for small interfering RNA (siRNA)-based RA gene therapy. The carrier is based on LMW PEI and modified with cholesterol and PEG. With these two modifications, the LPCE micelle becomes multifunctional, and it efficiently delivered siRNA to macrophages with a high efficiency greater than 70%. The synthesized LPCE exhibits strong siRNA protection ability and high safety. By delivering nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 siRNA, the p65 siRNA/LPCE complex efficiently inhibited macrophage-based cytokine release in vitro. Local administration of the p65 siRNA/LPCE complex exhibited a fast and potent anti-inflammatory effect against RA in a mouse model. According to the results of this study, the functionalized LPCE micelle that we prepared has potential gene therapeutic implications for RA.
Collapse
Affiliation(s)
- Xiaohua Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China; (X.C.); (Y.G.); (K.W.); (J.W.); (K.M.)
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China;
| | - Bailing Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China; (X.C.); (Y.G.); (K.W.); (J.W.); (K.M.)
- Correspondence: (B.Z.); (X.D.)
| | - Yan Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China; (X.C.); (Y.G.); (K.W.); (J.W.); (K.M.)
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China; (X.C.); (Y.G.); (K.W.); (J.W.); (K.M.)
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China; (X.C.); (Y.G.); (K.W.); (J.W.); (K.M.)
| | - Ming Shuai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China;
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China; (X.C.); (Y.G.); (K.W.); (J.W.); (K.M.)
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China;
- Correspondence: (B.Z.); (X.D.)
| |
Collapse
|
18
|
Zhou X, Huang D, Wang R, Wu M, Zhu L, Peng W, Tu H, Deng X, Zhu H, Zhang Z, Wang X, Cao X. Targeted therapy of rheumatoid arthritis via macrophage repolarization. Drug Deliv 2021; 28:2447-2459. [PMID: 34766540 PMCID: PMC8592611 DOI: 10.1080/10717544.2021.2000679] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The polarization of macrophages plays a critical role in the physiological and pathological progression of rheumatoid arthritis (RA). Activated M1 macrophages overexpress folate receptors in arthritic joints. Hence, we developed folic acid (FA)-modified liposomes (FA-Lips) to encapsulate triptolide (TP) (FA-Lips/TP) for the targeted therapy of RA. FA-Lips exhibited significantly higher internalization efficiency in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells than liposomes (Lips) in the absence of folate. Next, an adjuvant-induced arthritis (AIA) rat model was established to explore the biodistribution profiles of FA-Lips which showed markedly selective accumulation in inflammatory paws. Moreover, FA-Lips/TP exhibited greatly improved therapeutic efficacy and low toxicity in AIA rats by targeting M1 macrophages and repolarizing macrophages from M1 to M2 subtypes. Overall, a safe FA-modified liposomal delivery system encapsulating TP was shown to achieve inflammation-targeted therapy against RA via macrophage repolarization.
Collapse
Affiliation(s)
- Xu Zhou
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Dandan Huang
- Key Laboratory of Drug Targeting and Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Runkong Wang
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Mingquan Wu
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Liyang Zhu
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Wei Peng
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - He Tu
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Xuangeng Deng
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - He Zhu
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Zhong Zhang
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Xinming Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xi Cao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Fattal E, Fay F. Nanomedicine-based delivery strategies for nucleic acid gene inhibitors in inflammatory diseases. Adv Drug Deliv Rev 2021; 175:113809. [PMID: 34033819 DOI: 10.1016/j.addr.2021.05.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023]
Abstract
Thanks to their abilities to modulate the expression of virtually any genes, RNA therapeutics have attracted considerable research efforts. Among the strategies focusing on nucleic acid gene inhibitors, antisense oligonucleotides and small interfering RNAs have reached advanced clinical trial phases with several of them having recently been marketed. These successes were obtained by overcoming stability and cellular delivery issues using either chemically modified nucleic acids or nanoparticles. As nucleic acid gene inhibitors are promising strategies to treat inflammatory diseases, this review focuses on the barriers, from manufacturing issues to cellular/subcellular delivery, that still need to be overcome to deliver the nucleic acids to sites of inflammation other than the liver. Furthermore, key examples of applications in rheumatoid arthritis, inflammatory bowel, and lung diseases are presented as case studies of systemic, oral, and lung nucleic acid delivery.
Collapse
|
20
|
Employing siRNA tool and its delivery platforms in suppressing cisplatin resistance: Approaching to a new era of cancer chemotherapy. Life Sci 2021; 277:119430. [PMID: 33789144 DOI: 10.1016/j.lfs.2021.119430] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Although chemotherapy is a first option in treatment of cancer patients, drug resistance has led to its failure, requiring strategies to overcome it. Cancer cells are capable of switching among molecular pathways to ensure their proliferation and metastasis, leading to their resistance to chemotherapy. The molecular pathways and mechanisms that are responsible for cancer progression and growth, can be negatively affected for providing chemosensitivity. Small interfering RNA (siRNA) is a powerful tool extensively applied in cancer therapy in both pre-clinical (in vitro and in vivo) and clinical studies because of its potential in suppressing tumor-promoting factors. As such oncogene pathways account for cisplatin (CP) resistance, their targeting by siRNA plays an important role in reversing chemoresistance. In the present review, application of siRNA for suppressing CP resistance is discussed. The first priority of using siRNA is sensitizing cancer cells to CP-mediated apoptosis via down-regulating survivin, ATG7, Bcl-2, Bcl-xl, and XIAP. The cancer stem cell properties and related molecular pathways including ID1, Oct-4 and nanog are inhibited by siRNA in CP sensitivity. Cell cycle arrest and enhanced accumulation of CP in cancer cells can be obtained using siRNA. In overcoming siRNA challenges such as off-targeting feature and degradation, carriers including nanoparticles and biological carriers have been applied. These carriers are important in enhancing cellular accumulation of siRNA, elevating gene silencing efficacy and reversing CP resistance.
Collapse
|
21
|
Hosseinikhah SM, Barani M, Rahdar A, Madry H, Arshad R, Mohammadzadeh V, Cucchiarini M. Nanomaterials for the Diagnosis and Treatment of Inflammatory Arthritis. Int J Mol Sci 2021; 22:3092. [PMID: 33803502 PMCID: PMC8002885 DOI: 10.3390/ijms22063092] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Nanomaterials have received increasing attention due to their unique chemical and physical properties for the treatment of rheumatoid arthritis (RA), the most common complex multifactorial joint-associated autoimmune inflammatory disorder. RA is characterized by an inflammation of the synovium with increased production of proinflammatory cytokines (IL-1, IL-6, IL-8, and IL-10) and by the destruction of the articular cartilage and bone, and it is associated with the development of cardiovascular disorders such as heart attack and stroke. While a number of imaging tools allow for the monitoring and diagnosis of inflammatory arthritis, and despite ongoing work to enhance their sensitivity and precision, the proper assessment of RA remains difficult particularly in the early stages of the disease. Our goal here is to describe the benefits of applying various nanomaterials as next-generation RA imaging and detection tools using contrast agents and nanosensors and as improved drug delivery systems for the effective treatment of the disease.
Collapse
Affiliation(s)
- Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran;
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 761691411, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-9861, Iran
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany;
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 91886-17871, Iran;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany;
| |
Collapse
|
22
|
Lu Z, Laney VEA, Hall R, Ayat N. Environment-Responsive Lipid/siRNA Nanoparticles for Cancer Therapy. Adv Healthc Mater 2021; 10:e2001294. [PMID: 33615743 DOI: 10.1002/adhm.202001294] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/12/2020] [Indexed: 12/14/2022]
Abstract
RNA interference (RNAi) is a promising technology to regulate oncogenes for treating cancer. The primary limitation of siRNA for clinical application is the safe and efficacious delivery of therapeutic siRNA into target cells. Lipid-based delivery systems are developed to protect siRNA during the delivery process and to facilitate intracellular uptake. There is a significant progress in lipid nanoparticle systems that utilize cationic and protonatable amino lipid systems to deliver siRNA to tumors. Among these lipids, environment-responsive lipids are a class of novel lipid delivery systems that are capable of responding to the environment changes during the delivery process and demonstrate great promise for clinical translation for siRNA therapeutics. Protonatable or ionizable amino lipids and switchable lipids as well as pH-sensitive multifunctional amino lipids are the presentative environment-responsive lipids for siRNA delivery. These lipids are able to respond to environmental changes during the delivery process to facilitate efficient cytosolic siRNA delivery. Environment-responsive lipid/siRNA nanoparticles (ERLNP) are developed with the lipids and are tested for efficient delivery of therapeutic siRNA into the cytoplasm of cancer cells to silence target genes for cancer treatment in preclinical development. This review summarizes the recent developments in environment-response lipids and nanoparticles for siRNA delivery in cancer therapy.
Collapse
Affiliation(s)
- Zheng‐Rong Lu
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
| | - Victoria E. A. Laney
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
| | - Ryan Hall
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
| | - Nadia Ayat
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
| |
Collapse
|
23
|
Gao H, Cheng R, A. Santos H. Nanoparticle‐mediated siRNA delivery systems for cancer therapy. VIEW 2021. [DOI: 10.1002/viw.20200111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Han Gao
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki Finland
| | - Ruoyu Cheng
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki Finland
| | - Hélder A. Santos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki Helsinki Finland
| |
Collapse
|