1
|
Liu PL, He SH, Shen ZH, Li XR, Deng QS, Wei ZY, Zhang CR, Dou XQ, Zhu TH, Dawes H, Lu J, Guo SC, Tao SC. Bilayer Scaffolds Synergize Immunomodulation and Rejuvenation via Layer-Specific Release of CK2.1 and the "Exercise Hormone" Lac-Phe for Enhanced Osteochondral Regeneration. Adv Healthc Mater 2025; 14:e2402329. [PMID: 39529517 DOI: 10.1002/adhm.202402329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/21/2024] [Indexed: 11/16/2024]
Abstract
Repairing osteochondral defects necessitates the intricate reestablishment of the microenvironment. The cartilage layer consists of a porous gelatin methacryloyl hydrogel (PGelMA) covalently crosslinked with the chondroinductive peptide CK2.1 via a "linker" acrylate-PEG-N-hydroxysuccinimide (AC-PEG-NHS). This layer is optimized for remodeling the senescent microenvironment in the cartilage region, thereby establishing a regenerative microenvironment that supports chondrogenesis. For the bone layer, silk fibroin methacryloyl (SilMA) is coated onto a three dimensional (3D)-printed 45S5 bioactive glass scaffold (BG scaffold). The "exercise hormone" N-lactoyl-phenylalanine (Lac-Phe) is loaded onto the SilMA, endowing it with diversified functions to regulate the osteogenic microenvironment. Systematic analysis in vitro reveals that PGelMA-CK2.1 shifts the microenvironment from a pro-inflammatory into an anti-inflammatory condition, and alleviates cellular senescence, thus modifying the cartilage microenvironment to improve the recruitment, proliferation and chondral differentiation of bone marrow mesenchymal stem cells (BMSCs). The scaffold bone layer enhances microvascular endothelial cell proliferation, migration, and angiogenic activities, which, couple with increased BMSC recruitment and regulatory mechanisms directing BMSC differentiation, favor a shift in the "osteogenesis-adipogenesis" balance toward enhanced osteogenesis. In vivo, it is found that this biphasic biomimetic scaffold favors simultaneous dual tissue regeneration. This approach facilitates the development of bioactive regenerative scaffolds and holds great potential for clinical application.
Collapse
Affiliation(s)
- Po-Lin Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Shu-Hang He
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zhi-Han Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Xu-Ran Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Qing-Song Deng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zhan-Ying Wei
- Shanghai Clinical Research Centre of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chang-Ru Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Xiao-Qiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, China
| | - Tong-He Zhu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-Coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Helen Dawes
- Faculty of Health and Life Science, Oxford Brookes University, Headington Road, Oxford, OX3 0BP, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford, OX3 7JX, UK
- College of Medicine and Health, St Lukes Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Jian Lu
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| | - Shang-Chun Guo
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Shi-Cong Tao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
| |
Collapse
|
2
|
Wang M, Wang J, Xu X, Li E, Xu P. Engineering gene-activated bioprinted scaffolds for enhancing articular cartilage repair. Mater Today Bio 2024; 29:101351. [PMID: 39649247 PMCID: PMC11621797 DOI: 10.1016/j.mtbio.2024.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024] Open
Abstract
Untreated articular cartilage injuries often result in severe chronic pain and dyskinesia. Current repair strategies have limitations in effectively promoting articular cartilage repair, underscoring the need for innovative therapeutic approaches. A gene-activated matrix (GAM) is a promising and comprehensive therapeutic strategy that integrates tissue-engineered scaffold-guided gene therapy to promote long-term articular cartilage repair by enhancing gene retention, reducing gene loss, and regulating gene release. However, for effective articular cartilage repair, the GAM scaffold must mimic the complex gradient structure of natural articular cartilage. Three-dimensional (3D) bioprinting technology has emerged as a compelling solution, offering the ability to precisely create complex microstructures that mimic the natural articular cartilage. In this review, we summarize the recent research progress on GAM and 3D bioprinted scaffolds in articular cartilage tissue engineering (CTE), while also exploring future challenges and development directions. This review aims to provide new ideas and concepts for the development of gene-activated bioprinted scaffolds with specific properties tailored to meet the stringent requirements of articular cartilage repair.
Collapse
Affiliation(s)
- Min Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Jiachen Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Xin Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Erliang Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| |
Collapse
|
3
|
Zhang W, Cui Y, Lu M, Xu M, Li Y, Song H, Luo Y, Song J, Yang Y, Wang X, Liao L, Wang Y, Reid L, He Z. Hormonally and chemically defined expansion conditions for organoids of biliary tree Stem Cells. Bioact Mater 2024; 41:672-695. [PMID: 39309110 PMCID: PMC11415613 DOI: 10.1016/j.bioactmat.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Wholly defined ex vivo expansion conditions for biliary tree stem cell (BTSC) organoids were established, consisting of a defined proliferative medium (DPM) used in combination with soft hyaluronan hydrogels. The DPM consisted of commercially available Kubota's Medium (KM), to which a set of small molecules, particular paracrine signals, and heparan sulfate (HS) were added. The small molecules used were DNA methyltransferase inhibitor (RG108), TGF- β Type I receptor inhibitor (A83-01), adenylate cyclase activator (Forskolin), and L-type Ca2+ channel agonist (Bay K8644). A key paracrine signal proved to be R-spondin 1 (RSPO1), a secreted protein that activates Wnts. Soluble hyaluronans, 0.05 % sodium hyaluronate, were used with DPM to expand monolayer cultures. Expansion of organoids was achieved by using DPM in combination with embedding organoids in Matrigel that was replaced with a defined thiol-hyaluronan triggered with PEGDA to form a hydrogel with a rheology [G*] of less than 100 Pa. The combination is called the BTSC-Expansion-Glycogel-System (BEX-gel system) for expanding BTSCs as a monolayer or as organoids. The BTSC organoids were expanded more than 3000-fold ex vivo in the BEX-gel system within 70 days while maintaining phenotypic traits indicative of stem/progenitors. Stem-cell-patch grafting of expanded BTSC organoids was performed on the livers of Fah-/- mice with tyrosinemia and resulted in the rescue of the mice and restoration of their normal liver functions. The BEX-gel system for BTSC organoid expansion provides a strategy to generate sufficient numbers of organoids for the therapeutic treatments of liver diseases.
Collapse
Affiliation(s)
- Wencheng Zhang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yangyang Cui
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Mengqi Lu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Mingyang Xu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yuting Li
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Haimeng Song
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yi Luo
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Jinjia Song
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yong Yang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xicheng Wang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Lijun Liao
- Department of Anesthesiology and Pain Management, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Lola Reid
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, United States
| | - Zhiying He
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| |
Collapse
|
4
|
Wang Y, Zhao L, Zhou L, Chen C, Chen G. Sequential release of vascular endothelial growth factor-A and bone morphogenetic protein-2 from osteogenic scaffolds assembled by PLGA microcapsules: A preliminary study in vitro. Int J Biol Macromol 2023; 232:123330. [PMID: 36681218 DOI: 10.1016/j.ijbiomac.2023.123330] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/27/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Bone regeneration is a complex process sequentially regulated by multiple cytokines at different stages. Vascular endothelial growth factor-A (VEGF-A) and bone morphogenetic protein-2 (BMP-2) are the two most important factors involved in this process, and the combination of the two can achieve better bone regeneration by coupling angiogenesis and osteogenesis. In this study, poly(lactic-co-glycolic acid) (PLGA) microspheres with core-shell structure (microcapsules) encapsulating VEGF-A or BMP-2 were prepared by coaxial channel injection and continuous fluid technology. The sequential release of two cytokines by microcapsules with different PLGA molecular weight and shell thickness and its performance in vitro were explored. It was demonstrated that the molecular weight of PLGA significantly affected the degradation and release kinetics of microcapsules, while the thickness of the shell can regulate the release in a finer level. VEGF-A encapsulated microcapsules with low molecular weight can induce vascular endothelial cells to form lumens structures in vitro at an early stage. And BMP-2 encapsulated microcapsules could promote osteogenic differentiation, but the effect could be delayed when the microcapsules were prepared with PLGA of 150 kDa. In conclusion, the core-shell PLGA microcapsules in this study can sequentially release VEGF-A and BMP-2 at different stages to simulate natural bone repair.
Collapse
Affiliation(s)
- Ying Wang
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Lingyan Zhao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Lvhui Zhou
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Chen Chen
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China.
| | - Gang Chen
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China.
| |
Collapse
|
5
|
Ding SL, Liu X, Zhao XY, Wang KT, Xiong W, Gao ZL, Sun CY, Jia MX, Li C, Gu Q, Zhang MZ. Microcarriers in application for cartilage tissue engineering: Recent progress and challenges. Bioact Mater 2022; 17:81-108. [PMID: 35386447 PMCID: PMC8958326 DOI: 10.1016/j.bioactmat.2022.01.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
Successful regeneration of cartilage tissue at a clinical scale has been a tremendous challenge in the past decades. Microcarriers (MCs), usually used for cell and drug delivery, have been studied broadly across a wide range of medical fields, especially the cartilage tissue engineering (TE). Notably, microcarrier systems provide an attractive method for regulating cell phenotype and microtissue maturations, they also serve as powerful injectable carriers and are combined with new technologies for cartilage regeneration. In this review, we introduced the typical methods to fabricate various types of microcarriers and discussed the appropriate materials for microcarriers. Furthermore, we highlighted recent progress of applications and general design principle for microcarriers. Finally, we summarized the current challenges and promising prospects of microcarrier-based systems for medical applications. Overall, this review provides comprehensive and systematic guidelines for the rational design and applications of microcarriers in cartilage TE.
Collapse
Affiliation(s)
- Sheng-Long Ding
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xin Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xi-Yuan Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ke-Tao Wang
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Wei Xiong
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zi-Li Gao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng-Yi Sun
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Min-Xuan Jia
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng Li
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regeneration, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ming-Zhu Zhang
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
6
|
Liu X, Wang J, Xu X, Zhu H, Man K, Zhang J. SDF-1 Functionalized Hydrogel Microcarriers for Skin Flap Repair. ACS Biomater Sci Eng 2022; 8:3576-3588. [PMID: 35899941 DOI: 10.1021/acsbiomaterials.2c00755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Critically sized skin flaps used to treat skin defects often suffer from necrosis due to insufficient blood supply. Hence there is an urgent need to improve the survival rate of skin flaps by promoting local angiogenesis. The delivery of growth factor loaded microcarriers have shown promise in enhancing defect repair, however, their rapid clearance from the defect site limits their regenerative potential. Thus, it is critical to develop microcarriers which can promote the sustained release of bioactive factors to effectively stimulate tissue repair. This study aimed to develop a stromal cell-derived factor 1 (SDF-1) loaded microcarrier coated with Matrigel (MC@SDF-1@Mat) to promote skin flap repair. SEM imaging showed that the surface of the microcarrier was coated by a porous Matrigel film. The drug release experiment showed that the Matrigel-coated microcarriers enhanced the sustained release of the model drug methylene blue when compared to uncoated group. MC@SDF-1@Mat significantly promoted the proliferation, migration, and angiogenesis of HUVECs via CCK-8, wound healing assay, and tube formation assay, respectively. Moreover, the murine random skin flap model was further established and treated. It was found that the flap necrosis area in the MC@SDF-1@Mat treated group was significantly reduced. H&E and Masson staining showed the histological structure and collagen organization exhibited a normal phenotype in the MC@SDF-1@Mat treated group. Additionally, CD31 immunohistochemical analysis showed that the MC@SDF-1@Mat treated group exhibited the greatest degree of neovascularization. In conclusion, our SDF-1 functionalized gelatin-based hydrogel microcarrier has potential clinical applications in promoting skin flap repair and drug delivery.
Collapse
Affiliation(s)
- Xiaochuan Liu
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, P.R. China
| | - Jinsi Wang
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, P.R. China
| | - Xiaoqin Xu
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, P.R. China
| | - Hong Zhu
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, P.R. China
| | - Kenny Man
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jingying Zhang
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, P.R. China
| |
Collapse
|
7
|
Biomimetic amphiphilic FAAP NPs nanoparticles: Synthesis, characterization and antivirus activity. Int Immunopharmacol 2021; 101:108047. [PMID: 34619499 DOI: 10.1016/j.intimp.2021.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022]
Abstract
Antiviral agents based on natural products have attracted substantial attention in clinical applications for their distinct biological activities,molecular structuralmultiformities, and low biotoxicities. Ferulic acid (FA) with apigenin propaneto form an esterified FA derivative (FAAP).Herein, we designed a CsPbBr3-modified chitosan oligosaccharide, a biomimetic nanoplatform that could load with FAAP. After self-assembly by combining FAAP with CsPbBr3-modified chitosan oligosaccharide (FAAP NPs), the resulting nanoparticles (FAAP NPs) showed high antioxidant and anti-inflammatory activities for enhancing the inhibition of porcineparvovirus.FAAP NPs exhibited no signs of acute toxicity in vitro or in vivo. DPPH and ABST are widely used for quantitative determination of antioxidant capacity. FAAP NPs exhibited excellent DPPH and ABTS radical scavenging abilities. In addition, we found that FAAP NPs inhibited PPV infection-induced PK-15 cell apoptosis, which was associated with regulating antioxidant and anti-inflammatory signaling pathways. Importantly, we showed that FAAP NPs blocked PPV infection-induced mitochondrial apoptosis in PK-15 cells via a p53/BH3 domain molecular-dependent mechanism.
Collapse
|
8
|
Kim HJ, Lee S, Park JM, Cho HB, Park JI, Park JS, Park KH. Development of a three-layer consecutive gene delivery system for enhanced bone regeneration. Biomaterials 2021; 277:121104. [PMID: 34478934 DOI: 10.1016/j.biomaterials.2021.121104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/02/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022]
Abstract
This study developed a three-layer consecutive gene delivery system (T-CGDS) for timely gene delivery into human mesenchymal stem cells (hMSCs). The timing of transcription factor expression is important to effectively induce bone differentiation. Therefore, a three-layered nanocomposite was fabricated using differently sized gold nanoparticles to promote bone regeneration and osteogenic differentiation. The core layer comprised 80 nm gold nanoparticles coupled with ATF4 pDNA. Following coating with heparin-conjugated Pluronic F-127 (HP-F127), 50 nm gold nanoparticles coupled with SP7 pDNA were added to fabricate a bi-layer system. After further coating with HP-F127, 20 nm gold nanoparticles combined with RUNX2 pDNA were added. Consequently, a T-CGDS measuring 350-450 nm was fabricated. Genes were released for more than 8 days, while the size of the T-CGDS decreased over time. When the T-CGDS was applied to hMSCs, the gene in the outer layer (RUNX2) was expressed first, followed by those in the middle (SP7) and core (ATF4) layers. The T-CGDS effectively induced bone differentiation and regeneration in vitro and in vivo. Timely delivery of the ATF4 gene to stem cells via the T-CGDS can greatly assist osteogenic differentiation involved in bone regeneration.
Collapse
Affiliation(s)
- Hye Jin Kim
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Korea
| | - Sujin Lee
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Korea
| | - Jong Min Park
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Korea
| | - Hui Bang Cho
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Korea
| | - Ji-In Park
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Korea
| | - Ji Sun Park
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Korea.
| | - Keun-Hong Park
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, 6F, CHA Bio-Complex, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Korea.
| |
Collapse
|