1
|
Wang X, Lu H, Luo F, Wang D, Wang A, Wang X, Feng W, Wang X, Su J, Liu M, Xia G. Lipid-like gemcitabine diester-loaded liposomes for improved chemotherapy of pancreatic cancer. J Control Release 2024; 365:112-131. [PMID: 37981050 DOI: 10.1016/j.jconrel.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Gemcitabine (GEM) is a non-selective chemotherapeutic agent used in the treatment of pancreatic cancer. Its antitumor efficacy is limited by a short plasma half-life and severe adverse reactions. To overcome these shortcomings, four novel lipid-like GEM diesters were synthesized and encapsulated into liposomes. Through optimization, dimyristoyl GEM (dmGEM)-loaded liposomes (LipodmGEM) were successfully obtained with an almost complete encapsulation efficiency. Compared to free GEM, LipodmGEM showed enhanced cellular uptake and cell apoptosis, improved inhibition of cell migration on AsPC-1 cells and a greatly extended half-life (7.22 vs. 1.78 h). LipodmGEM succeeded in enriching the drug in the tumor (5.28 vs. 0.03 μmol/g at 8 h), overcoming a major shortcoming of GEM, showed excellent anticancer efficacy in vivo and negligible systemic toxicity, superior to GEM. Attractive as well, suspensions of LipodmGEM remained stable at 2-10 °C away from light for no <2 years. Our results suggest that LipodmGEM might become of high interest for treating pancreatic cancer while the simple strategy we reported might be explored as well for converting other antitumor drugs with high water-solubility and short plasma half-life into attractive nanomedicines.
Collapse
Affiliation(s)
- Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Hongwei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Fang Luo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Wenkai Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xiaobo Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Jiayi Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
2
|
Ju Q, Huang R, Hu R, Fan J, Zhang D, Ding J, Li R. Phytic acid-modified manganese dioxide nanoparticles oligomer for magnetic resonance imaging and targeting therapy of osteosarcoma. Drug Deliv 2023; 30:2181743. [PMID: 36855959 PMCID: PMC9980014 DOI: 10.1080/10717544.2023.2181743] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Osteosarcoma is the most common malignant tumor in the skeletal system with high mortality. Phytic acid (PA) is a natural compound extracted from plant seeds, which shows certain antitumor activity and good bone targeting ability. To develop a novel theranostics for magnetic resonance imaging (MRI) and targeting therapy of osteosarcoma, we employed PA to modify manganese dioxide nanoparticles (MnO2@PA NPs) for osteosarcoma treatment. The MnO2 NPs oligomer was formed by PA modification with uniformed size distribution and negative zeta potential. Fourier-transform infrared spectroscopy, X-ray diffraction, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis demonstrated that PA has been successfully modified on MnO2 NPs, and the structure of MnO2@PA NPs is amorphous. In vitro experiments demonstrated that MnO2@PA NPs oligomer can be efficiently internalized by tumor cell, and the internalized NPs can react with H2O2 under acid microenvironment to produce Mn2+ and O2. In vivo experiments demonstrated that MnO2@PA NPs oligomer can passively accumulate in tumor tissue, and the accumulated NPs can produce Mn2+ and O2 for MRI and targeting therapy of osteosarcoma. In conclusion, we prepared a novel bone-targeting nano theranostics for MRI and therapy of osteosarcoma.
Collapse
Affiliation(s)
- Qian Ju
- College of Chemistry, Chongqing Normal University, Chongqing, China,Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Rong Huang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ruimin Hu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junjie Fan
- Department of Clinical Laboratory, the 958th Hospital of Chinese People’s Liberation Army, Chongqing, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China,Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China,Dinglin Zhang or Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing400038, China
| | - Jun Ding
- Department of Ultrasonics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China,Jun Ding Department of Ultrasound, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing400038, China
| | - Rong Li
- College of Chemistry, Chongqing Normal University, Chongqing, China,CONTACT Rong Li College of Chemistry, Chongqing Normal University, Chongqing401331, China
| |
Collapse
|
3
|
Yu T, Cai Z, Chang X, Xing C, White S, Guo X, Jin J. Research Progress of Nanomaterials in Chemotherapy of Osteosarcoma. Orthop Surg 2023; 15:2244-2259. [PMID: 37403654 PMCID: PMC10475694 DOI: 10.1111/os.13806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Osteosarcoma (OS) is a common malignant bone tumor that occurs mostly in children and adolescents. At present, surgery after chemotherapy or postoperative adjuvant chemotherapy is the main treatment plan. However, the efficacy of chemotherapeutic drugs is limited by the occurrence of chemotherapeutic resistance, toxicity to normal cells, poor pharmacokinetic performance, and drug delivery failure. The delivery of chemotherapy drugs to the bone to treat OS may fail for a variety of reasons, such as a lack of selectivity for OS cells, initial sudden release, short-term release, and the presence of biological barriers (such as the blood-bone marrow barrier). Nanomaterials are new materials with at least one dimension on the nanometer scale (1-100 nm) in three-dimensional space. These materials have the ability to penetrate biological barriers and can accumulate preferentially in tumor cells. Studies have shown that the effective combination of nanomaterials and traditional chemotherapy can significantly improve the therapeutic effect. Therefore, this article reviews the latest research progress on the use of nanomaterials in OS chemotherapy.
Collapse
Affiliation(s)
- Tianci Yu
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Zongyan Cai
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Xingyu Chang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Chengwei Xing
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Sylvia White
- Pathology DepartmentYale School of MedicineNew HavenCTUSA
| | - Xiaoxue Guo
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Jiaxin Jin
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouChina
- Department of OrthopaedicsThe Second Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
4
|
Xiao P, Tao X, Wang H, Liu H, Feng Y, Zhu Y, Jiang Z, Yin T, Zhang Y, He H, Gou J, Tang X. Enzyme/pH dual stimuli-responsive nanoplatform co-deliver disulfiram and doxorubicin for effective treatment of breast cancer lung metastasis. Expert Opin Drug Deliv 2023; 20:1015-1031. [PMID: 37452715 DOI: 10.1080/17425247.2023.2237888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVES Metastasis is still one of the main obstacles in the treatment of breast cancer. This study aimed to develop disulfiram (DSF) and doxorubicin (DOX) co-loaded nanoparticles (DSF-DOX NPs) with enzyme/pH dual stimuli-responsive characteristics to inhibit breast cancer metastasis. METHODS DSF-DOX NPs were prepared using the amphiphilic poly(ε-caprolactone)-b-poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) (PCL-b-PGlu-g-mPEG) copolymer by a classical dialysis method. In vitro release tests, in vitro cytotoxicity assay, and anti-metastasis studies were conducted to evaluate pH/enzyme sensitivity and therapeutic effect of DSF-DOX NPs. RESULTS The specific pH and enzyme stimuli-responsiveness of DSF-DO NPs can be attributed to the transformation of secondary structure and the degradation of amide bonds in the PGlu segment, respectively. This accelerated drug release significantly increased the cytotoxicity to 4T1 cells. Compared with the control group, the DSF-DOX NPs showed a strong inhibition of in vitro metastasis with a wound healing rate of 36.50% and a migration rate of 18.39%. Impressively, in vivo anti-metastasis results indicated that the metastasis of 4T1 cells was almost completely suppressed by DSF-DOX NPs. CONCLUSION DSF-DOX NPs with controllable tumor site delivery of DOX and DSF were a prospectively potential strategy for metastatic breast cancer treatment.
Collapse
Affiliation(s)
- Peifu Xiao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoguang Tao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongbing Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yupeng Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yueqi Zhu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhengzhen Jiang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
5
|
Chien ST, Suydam IT, Woodrow KA. Prodrug approaches for the development of a long-acting drug delivery systems. Adv Drug Deliv Rev 2023; 198:114860. [PMID: 37160248 PMCID: PMC10498988 DOI: 10.1016/j.addr.2023.114860] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
Long-acting formulations are designed to reduce dosing frequency and simplify dosing schedules by providing an extended duration of action. One approach to obtain long-acting formulations is to combine long-acting prodrugs (LA-prodrug) with existing or emerging drug delivery technologies (DDS). The design criteria for long-acting prodrugs are distinct from conventional prodrug strategies that alter absorption, distribution, metabolism, and excretion (ADME) parameters. Our review focuses on long-acting prodrug delivery systems (LA-prodrug DDS), which is a subcategory of long-acting formulations where prodrug design enables DDS formulation to achieve an extended duration of action that is greater than the parent drug. Here, we define LA-prodrugs as the conjugation of an active pharmaceutical ingredient (API) to a promoiety group via a cleavable covalent linker, where both the promoiety and linker are selected to enable formulation and administration from a drug delivery system (DDS) to achieve an extended duration of action. These LA-prodrug DDS results in an extended interval where the API is within a therapeutic range without necessarily altering ADME as is typical of conventional prodrugs. The conversion of the LA-prodrug to the API is dependent on linker cleavage, which can occur before or after release from the DDS. The requirement for linker cleavage provides an additional tool to prolong release from these LA-prodrug DDS. In addition, the physicochemical properties of drugs can be tuned by promoiety selection for a particular DDS. Conjugation with promoieties that are carriers or amenable to assembly into carriers can also provide access to formulations designed for extending duration of action. LA-prodrugs have been applied to a wide variety of drug delivery strategies and are categorized in this review by promoiety size and complexity. Small molecule promoieties (typically MW < 1000 Da) have been used to improve encapsulation or partitioning as well as broaden APIs for use with traditional long-acting formulations such as solid drug dispersions. Macromolecular promoieties (typically MW > 1000 Da) have been applied to hydrogels, nanoparticles, micelles, dendrimers, and polymerized prodrug monomers. The resulting LA-prodrug DDS enable extended duration of action for active pharmaceuticals across a wide range of applications, with target release timescales spanning days to years.
Collapse
Affiliation(s)
- Shin-Tian Chien
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Ian T Suydam
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States.
| |
Collapse
|
6
|
Cyclodextrin-containing redox-responsive nanogels: Fabrication of a modular targeted drug delivery system. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Liu F, Xu S, Xia P, Yang H, Qian Z, Jiang Y, Wang Z, Ban D, Wang C. Anhydride-Terminated Solid-State Carbon Dots with Bright Orange Emission Induced by Weak Excitonic Electronic Coupling. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5762-5774. [PMID: 35045698 DOI: 10.1021/acsami.1c18786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, fluorescent solid carbon dots (CDs) welcome a new member, namely anhydride-terminated CDs, which have a photoluminescence quantum yield (PLQY) of 28% for orange-emitted CDs at 580 nm in powder form. For the first time, we revealed that the electronic coupling of the functional groups should be a crucial factor affecting the optical properties of solid CDs. Due to the negligible hydrogen bonding interaction between the anhydride groups, the electronic coupling of excitons between neighboring anhydride groups is weak, leading to a high PLQY of 28% and an immobile emission peak at 580 nm in solid state. Anhydride-terminated CDs can be partly converted into carboxyl-terminated CDs after dispersion in ethanol. However, the strong electronic coupling of carboxyl groups at high concentration generates the stacking mode of J-aggregates, giving rise to a red-shifted emission from 450 to 515 nm as well as quenched fluorescence in solid state. In comparison, a useful blue emission for solid-state CDs occurs from low sp2 hybridized carbon atoms, which possess weak electronic coupling and a stationary emission band at 450 nm in both solution and solid state. By adjusting the feed ratio of the reactants, the relevant intensities between the emission from low sp2 hybridized carbon atoms at 450 nm and the emission from anhydride groups at 580 nm can be controlled. As a result, single-component anhydride-terminated CD powder with tunable emission color from orange to white light can be achieved. As-prepared anhydride-terminated CDs can be used for fabricating light-emitting diodes (LEDs), white LEDs, and luminescent solar concentrators (LSCs).
Collapse
Affiliation(s)
- Fan Liu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Shuhong Xu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Pengfei Xia
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Hongyu Yang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Ziting Qian
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Yuan Jiang
- Lab for Nanoelectronics and NanoDevices, Lab Department of Electronics Information, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Dayan Ban
- Waterloo Institute for Nanotechnology and Department of Electrical and Computer Engineering, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Chunlei Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|