1
|
Feng Y, Sun J, Wang T, Zheng Y, Zhao Y, Li Y, Lai S, Xu Y, Zhu M. Focused Ultrasound Combined With Microbubbles Attenuate Symptoms in Heroin-Addicted Mice. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1764-1776. [PMID: 39317628 DOI: 10.1016/j.ultrasmedbio.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVE To explore the efficacy and mechanisms of stimulating the nucleus accumbens (NAc) in heroin-addicted mice using focused ultrasound and microbubbles (MBs). METHODS The conditioned place preference (CPP) method was employed to establish a heroin-addicted mice model. Mice were randomized into control (C), heroin (H), heroin + ultrasound (H + U) and H + U + MBs. Ultrasound (2 MHz fundamental frequency, 1.34 MPa peak-negative pressure, 1 MHz pulse repetition frequency, 5% duty cycle, 15 min/d, over 2 d) was applied to stimulate the NAc in the latter 2 groups. Whereas H + U + MBs received an injection of sulfur hexafluoride MBs during the stimulation. Subsequently, CPP scores, open-field test (OFT), and elevated plus-maze test (EPMT) were conducted to assess behavioral changes in addiction memory, anxiety and exercise status. HE staining was performed to detect pathological structures. Neurotransmitters such as dopamine (DA), serotonin (5-HT) and glutamate (Glu) were detected using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Transmission electron microscopy (TEM) was used to observe ultrastructural changes of synapses in NAc. Immunohistochemistry (IHC) was utilized to detect Cleaved Caspase-3 in the NAc region. Western blotting (WB) was used to detect the protein expression of Cleaved Caspase-3, Bax and Bcl-2 in NAc. RESULTS HE staining showed small patches of erythrocyte exudation were observed in the NAc and adjacent areas in H + U + MBs. The CPP scores of H + U + MBs were lower (p < 0.05) than H. After ultrasound treatment, all indices of the OFT and EPMT in H + U + MBs were significantly higher than H (p < 0.05). UPLC-MS/MS revealed that the levels of DA, 5-HT and Glu in H + U + MBs were lower than H (p < 0.01). TEM showed decrease the number of synapses (p < 0.05), and noticeable swelling of mitochondria, membrane damage, as well as damage to the cristae. Further detection by IHC and WB showed that the pro-apoptotic proteins Cleaved Caspase-3 and Bax increased and Bcl-2 decreased as anti-apoptotic proteins after ultrasound combined with MBs (p < 0.05). CONCLUSION Focused ultrasound combined with MBs stimulate the NAc can weaken the addictive memory and improve anxiety of heroin-related mice. The mechanical effect of ultrasound combined with the cavitation effect may be a potential treatment for addiction.
Collapse
Affiliation(s)
- Yuran Feng
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiaxue Sun
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China; Yunnan Technology Innovation Center of Drug Addiction Medicine, Kunming, China
| | - Tao Wang
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yu Zheng
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi Zhao
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Youzhuo Li
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | | | - Yu Xu
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China; Yunnan Technology Innovation Center of Drug Addiction Medicine, Kunming, China.
| | - Mei Zhu
- The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Wegierak D, Nittayacharn P, Cooley MB, Berg FM, Kosmides T, Durig D, Kolios MC, Exner AA. Nanobubble Contrast Enhanced Ultrasound Imaging: A Review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2007. [PMID: 39511794 PMCID: PMC11567054 DOI: 10.1002/wnan.2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/07/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024]
Abstract
Contrast-enhanced ultrasound is currently used worldwide with clinical indications in cardiology and radiology, and it continues to evolve and develop through innovative technological advancements. Clinically utilized contrast agents for ultrasound consist of hydrophobic gas microbubbles stabilized with a biocompatible shell. These agents are used commonly in echocardiography, with emerging applications in cancer diagnosis and therapy. Microbubbles are a blood pool agent with diameters between 1 and 10 μm, which precludes their use in other extravascular applications. To expand the potential use of contrast-enhanced ultrasound beyond intravascular applications, sub-micron agents, often called nanobubbles or ultra-fine bubbles, have recently emerged as a promising tool. Combining the principles of ultrasound imaging with the unique properties of nanobubbles (high concentration and small size), recent work has established their imaging potential. Contrast-enhanced ultrasound imaging using these agents continues to gain traction, with new studies establishing novel imaging applications. We highlight the recent achievements in nonlinear nanobubble contrast imaging, including a discussion on nanobubble formulations and their acoustic characteristics. Ultrasound imaging with nanobubbles is still in its early stages, but it has shown great potential in preclinical research and animal studies. We highlight unexplored areas of research where the capabilities of nanobubbles may offer new advantages. As technology advances, this technique may find applications in various areas of medicine, including cancer detection and treatment, cardiovascular imaging, and drug delivery.
Collapse
Affiliation(s)
- Dana Wegierak
- Department of Biomedical Engineering, Case Western Reserve University (CWRU), Cleveland, Ohio, USA
| | - Pinunta Nittayacharn
- Department of Radiology, CWRU, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Puttamonthon, Nakorn Pathom, Thailand
| | - Michaela B Cooley
- Department of Biomedical Engineering, Case Western Reserve University (CWRU), Cleveland, Ohio, USA
| | - Felipe M Berg
- Department of Radiology, CWRU, Cleveland, Ohio, USA
- Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | - Theresa Kosmides
- Department of Biomedical Engineering, Case Western Reserve University (CWRU), Cleveland, Ohio, USA
| | - Dorian Durig
- Department of Biomedical Engineering, Case Western Reserve University (CWRU), Cleveland, Ohio, USA
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a Partnership Between St. Michael's Hospital, a Site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Agata A Exner
- Department of Biomedical Engineering, Case Western Reserve University (CWRU), Cleveland, Ohio, USA
- Department of Radiology, CWRU, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Marathe D, Bhuvanashree VS, Mehta CH, T. A, Nayak UY. Low-Frequency Sonophoresis: A Promising Strategy for Enhanced Transdermal Delivery. Adv Pharmacol Pharm Sci 2024; 2024:1247450. [PMID: 38938593 PMCID: PMC11208788 DOI: 10.1155/2024/1247450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 05/13/2024] [Indexed: 06/29/2024] Open
Abstract
Sonophoresis is the most approachable mode of transdermal drug delivery system, wherein low-frequency sonophoresis penetrates the drug molecules into the skin. It is an alternative method for an oral system of drug delivery and hypodermal injections. The cavitation effect is thought to be the main mechanism used in sonophoresis. The cavitation process involves forming a gaseous bubble and its rupture, induced in the coupled medium. Other mechanisms used are thermal effects, convectional effects, and mechanical effects. It mainly applies to transporting hydrophilic drugs, macromolecules, gene delivery, and vaccine delivery. It is also used in carrier-mediated delivery in the form of micelles, liposomes, and dendrimers. Some synergistic effects of sonophoresis, along with some permeation enhancers, such as chemical enhancers, iontophoresis, electroporation, and microneedles, increased the effectiveness of drug penetration. Sonophoresis-mediated ocular drug delivery, nail drug delivery, gene delivery to the brain, sports medicine, and sonothrombolysis are also widely used. In conclusion, while sonophoresis offers promising applications in diverse fields, further research is essential to comprehensively elucidate the biophysical mechanisms governing ultrasound-tissue interactions. Addressing these gaps in understanding will enable the refinement and optimization of sonophoresis-based therapeutic strategies for enhanced clinical efficacy.
Collapse
Affiliation(s)
- Divya Marathe
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Vasudeva Sampriya Bhuvanashree
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Chetan Hasmukh Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Ashwini T.
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
4
|
Lin CW, Fan CH, Yeh CK. The relationship between surface drug distribution of Dox-loaded microbubbles and drug release/cavitation behaviors with ultrasound. ULTRASONICS SONOCHEMISTRY 2024; 102:106728. [PMID: 38103369 PMCID: PMC10765110 DOI: 10.1016/j.ultsonch.2023.106728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Ultrasound (US)-triggered microbubbles (MBs) drug delivery is a promising tool for noninvasive and localized therapy. Several studies have shown the potential of drug-loaded MBs to boost the delivery of therapeutic substances to target tissue effectively. Nevertheless, little is known about the surface payload distribution affecting the cavitation activity and drug release behavior of the drug-loaded MBs. In this study, we designed a common chemodrug (Doxorubicin, Dox)-loaded MB (Dox-MBs) and regulated the payload distribution as uniform or cluster onto the outer surface of MBs. The Dox distribution on the MB shells was assessed by confocal fluorescence microscopic imaging. The acoustic properties of the Dox-MBs with different Dox distributions were evaluated by their acoustic stability and cavitation activities. The payload release and the fragments from Dox-MBs in response to different US parameters were measured and visualized by column chromatography and cryo-electron microscopy, respectively. By amalgamating these methodologies, we found that stable cavitation was sufficient for triggering uniform-loaded MBs to release their payload, but stable cavitation and inertial cavitation were required for cluster-loaded MBs. The released substances included free Dox and Dox-containing micelle/liposome; their portions depended on the payload distribution, acoustic pressure, cycle number, and sonication duration. Furthermore, we also revealed that the Dox-containing micelle/liposome in cluster-loaded MBs had the potential for multiple drug releases upon US sonication. This study compared uniform-loaded MBs and cluster-loaded MBs to enhance our comprehension of drug-loaded MBs mediated drug delivery.
Collapse
Affiliation(s)
- Chia-Wei Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
5
|
Rajora MA, Dhaliwal A, Zheng M, Choi V, Overchuk M, Lou JWH, Pellow C, Goertz D, Chen J, Zheng G. Quantitative Pharmacokinetics Reveal Impact of Lipid Composition on Microbubble and Nanoprogeny Shell Fate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304453. [PMID: 38032129 PMCID: PMC10811482 DOI: 10.1002/advs.202304453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Microbubble-enabled focused ultrasound (MB-FUS) has revolutionized nano and molecular drug delivery capabilities. Yet, the absence of longitudinal, systematic, quantitative studies of microbubble shell pharmacokinetics hinders progress within the MB-FUS field. Microbubble radiolabeling challenges contribute to this void. This barrier is overcome by developing a one-pot, purification-free copper chelation protocol able to stably radiolabel diverse porphyrin-lipid-containing Definity® analogues (pDefs) with >95% efficiency while maintaining microbubble physicochemical properties. Five tri-modal (ultrasound-, positron emission tomography (PET)-, and fluorescent-active) [64 Cu]Cu-pDefs are created with varying lipid acyl chain length and charge, representing the most prevalently studied microbubble compositions. In vitro, C16 chain length microbubbles yield 2-3x smaller nanoprogeny than C18 microbubbles post FUS. In vivo, [64 Cu]Cu-pDefs are tracked in healthy and 4T1 tumor-bearing mice ± FUS over 48 h qualitatively through fluorescence imaging (to characterize particle disruption) and quantitatively through PET and γ-counting. These studies reveal the impact of microbubble composition and FUS on microbubble dissolution rates, shell circulation, off-target tissue retention (predominantly the liver and spleen), and FUS enhancement of tumor delivery. These findings yield pharmacokinetic microbubble structure-activity relationships that disrupt conventional knowledge, the implications of which on MB-FUS platform design, safety, and nanomedicine delivery are discussed.
Collapse
Affiliation(s)
- Maneesha A. Rajora
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioM5G 1L7Canada
| | - Alexander Dhaliwal
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
| | - Mark Zheng
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
| | - Victor Choi
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
| | - Marta Overchuk
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioM5G 1L7Canada
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityChapel HillNC27599USA
| | - Jenny W. H. Lou
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
| | - Carly Pellow
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
- Sunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
| | - David Goertz
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
- Sunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
| | - Juan Chen
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
| | - Gang Zheng
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioM5G 1L7Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
| |
Collapse
|
6
|
Hu Y, Wei J, Shen Y, Chen S, Chen X. Barrier-breaking effects of ultrasonic cavitation for drug delivery and biomarker release. ULTRASONICS SONOCHEMISTRY 2023; 94:106346. [PMID: 36870921 PMCID: PMC10040969 DOI: 10.1016/j.ultsonch.2023.106346] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 05/27/2023]
Abstract
Recently, emerging evidence has demonstrated that cavitation actually creates important bidirectional channels on biological barriers for both intratumoral drug delivery and extratumoral biomarker release. To promote the barrier-breaking effects of cavitation for both therapy and diagnosis, we first reviewed recent technical advances of ultrasound and its contrast agents (microbubbles, nanodroplets, and gas-stabilizing nanoparticles) and then reported the newly-revealed cavitation physical details. In particular, we summarized five types of cellular responses of cavitation in breaking the plasma membrane (membrane retraction, sonoporation, endocytosis/exocytosis, blebbing and apoptosis) and compared the vascular cavitation effects of three different types of ultrasound contrast agents in breaking the blood-tumor barrier and tumor microenvironment. Moreover, we highlighted the current achievements of the barrier-breaking effects of cavitation in mediating drug delivery and biomarker release. We emphasized that the precise induction of a specific cavitation effect for barrier-breaking was still challenged by the complex combination of multiple acoustic and non-acoustic cavitation parameters. Therefore, we provided the cutting-edge in-situ cavitation imaging and feedback control methods and suggested the development of an international cavitation quantification standard for the clinical guidance of cavitation-mediated barrier-breaking effects.
Collapse
Affiliation(s)
- Yaxin Hu
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Jianpeng Wei
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Yuanyuan Shen
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Siping Chen
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Xin Chen
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China.
| |
Collapse
|
7
|
Long T, Xie L, Pulati M, Wen Q, Guo X, Zhang D. C. elegans: Sensing the low-frequency profile of amplitude-modulated ultrasound. ULTRASONICS 2023; 128:106887. [PMID: 36395535 DOI: 10.1016/j.ultras.2022.106887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Several research groups have demonstrated that C. elegans can respond to pulsed ultrasound stimuli, and elucidating the underlying mechanisms is necessary to develop ultrasound neuromodulation. Here, amplitude-modulated (AM) ultrasound is applied to C. elegans, and its behavioral responses are investigated in detail. By loading surface acoustic waves (SAWs) onto free-moving worms on an agar surface, a carrier wave with a frequency of 8.80 MHz is selected. The signal is modulated by a rectangular or sinusoidal profile. It is demonstrated that sinusoidal modulation can produce similar responses in worms to rectangular modulation, with the strongest responses occurring at modulation frequencies of around 1.00 kHz. Meanwhile, the behavioral response is relatively weak when the ultrasonic signal is unmodulated, that is, when only the carrier wave is applied. At modulation frequencies other than 100.00 Hz to 10.00 kHz, the worms respond weakly, but when a second modulation frequency of 1.00 kHz is introduced, an improvement in response can be observed. These results suggest that C. elegans may sense the low-frequency envelope and respond to amplitude-modulated ultrasonic stimuli like an amplitude demodulator. MEC-4, an ion channel for touch sensing, is involved in the behavioral response of C. elegans to ultrasound in the present setup.
Collapse
Affiliation(s)
- Tianyang Long
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Linzhou Xie
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Mayibaier Pulati
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China
| | - Quan Wen
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
8
|
Recent progress in theranostic microbubbles. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Choi W, Key J, Youn I, Lee H, Han S. Cavitation-assisted sonothrombolysis by asymmetrical nanostars for accelerated thrombolysis. J Control Release 2022; 350:870-885. [PMID: 36096365 DOI: 10.1016/j.jconrel.2022.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
Sonothrombolysis with recombinant tissue plasminogen activator (rtPA) and microbubbles has been widely studied to enhance thrombolytic potential. Here, we report different sonothrombolysis strategy in nanoparticles using microbubbles cavitation. We found that different particles in shape exhibited different reactivity toward the cavitation, leading to a distinct sonothrombolytic potential. Two different gold nanoparticles in shape were functionalized with the rtPA: rtPA-functionalized gold nanospheres (NPt) and gold nanostars (NSt). NPt could not accelerate the thrombolytic potential with a sole acoustic stimulus. Importantly, NSt enhanced the potential with acoustic stimulus and microbubble-mediated cavitation, while NPt were not reactive to cavitation. Coadministration of NSt and microbubbles resulted in a dramatic reduction of the infarcts in a photothrombotic model and recovery in the cerebral blood flow. Given the synergistic effect and in vivo feasibility of this strategy, cavitation-assisted sonothrombolysis by asymmetrical NSt might be useful for treating acute ischemic stroke.
Collapse
Affiliation(s)
- Wonseok Choi
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Seongbuk-gu, Republic of Korea; Department of Biomedical Engineering, Yonsei University, Wonju 26493, Gangwon-do, Republic of Korea
| | - Jaehong Key
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Gangwon-do, Republic of Korea
| | - Inchan Youn
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Seongbuk-gu, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Seongbuk-gu, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Seongbuk-gu, Republic of Korea
| | - Hyojin Lee
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Seongbuk-gu, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Seongbuk-gu, Republic of Korea.
| | - Sungmin Han
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Seongbuk-gu, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Seongbuk-gu, Republic of Korea.
| |
Collapse
|
10
|
Fan CH, Ho YJ, Lin CW, Wu N, Chiang PH, Yeh CK. State-of-the-art of ultrasound-triggered drug delivery from ultrasound-responsive drug carriers. Expert Opin Drug Deliv 2022; 19:997-1009. [PMID: 35930441 DOI: 10.1080/17425247.2022.2110585] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The development of new tools to locally and non-invasively transferring therapeutic substances at the desired site in deep living tissue has been a long sought-after goal within the drug delivery field. Among the established methods, ultrasound (US) with US-responsive carriers holds great promise and demonstrates on-demand delivery of a variety of functional substances with spatial precision of several millimeters in deep-seated tissues in animal models and humans. These properties have motivated several explorations of US with US responsive carriers as a modality for neuromodulation and the treatment of various diseases, such as stroke and cancer. AREAS COVERED This article briefly discussed three specific mechanisms that enhance in vivo drug delivery via US with US-responsive carriers: 1) permeabilizing cellular membrane, 2) increasing the permeability of vessels, and 3) promoting cellular endocytotic uptake. Besides, a series of US-responsive drug carriers are discussed, with an emphasis on the relation between structural feature and therapeutic outcome. EXPERT OPINION This article summarized current development for each of US-responsive drug carrier, focusing on the routes of enhancing delivery and applications. The mechanisms of interaction between US-responsive carriers and US energy, such as cavitation, hyperthermia, and reactive oxygen species, as well as how these interactions can improve drug delivery into target cell/tissue. It can be expected that there are serval efforts to further identification of US-responsive particles, design of novel US waveform sequence, and survey of optimal combination between US parameters and US-responsive carriers for better controlling the spatiotemporal drug release profile, stability, and safety in vivo. The authors believe these will provide novel tools for precisely designing treatment strategies and significantly benefit the clinical management of several diseases.
Collapse
Affiliation(s)
- Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ju Ho
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chia-Wei Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Nan Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Hua Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
11
|
Overcoming Hypoxia-Induced Drug Resistance via Promotion of Drug Uptake and Reoxygenation by Acousto–Mechanical Oxygen Delivery. Pharmaceutics 2022; 14:pharmaceutics14050902. [PMID: 35631488 PMCID: PMC9144555 DOI: 10.3390/pharmaceutics14050902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Hypoxia-induced drug resistance (HDR) is a critical issue in cancer therapy. The presence of hypoxic tumor cells impedes drug uptake and reduces the cytotoxicity of chemotherapeutic drugs, leading to HDR and increasing the probability of tumor recurrence and metastasis. Microbubbles, which are used as an ultrasound contrast agent and drug/gas carrier, can locally deliver drugs/gas and produce an acousto–mechanical effect to enhance cell permeability under ultrasound sonication. The present study applied oxygen-loaded microbubbles (OMBs) to evaluate the mechanisms of overcoming HDR via promotion of drug uptake and reoxygenation. A hypoxic mouse prostate tumor cell model was established by hypoxic incubation for 4 h. After OMB treatment, the permeability of HDR cells was enhanced by 23 ± 5% and doxorubicin uptake was increased by 11 ± 7%. The 61 ± 14% reoxygenation of HDR cells increased the cytotoxicity of doxorubicin from 18 ± 4% to 58 ± 6%. In combination treatment with OMB and doxorubicin, the relative contributions of uptake promotion and reoxygenation towards overcoming HDR were 11 ± 7% and 28 ± 10%, respectively. Our study demonstrated that reoxygenation of hypoxic conditions is a critical mechanism in the inhibition of HDR and enhancing the outcome of OMB treatment.
Collapse
|
12
|
Sun L, Zhang J, Xu M, Zhang L, Tang Q, Chen J, Gong M, Sun S, Ge H, Wang S, Liang X, Cui L. Ultrasound Microbubbles Mediated Sonosensitizer and Antibody Co-delivery for Highly Efficient Synergistic Therapy on HER2-Positive Gastric Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:452-463. [PMID: 34961307 DOI: 10.1021/acsami.1c21924] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Trastuzumab combined with chemotherapy is the first-line treatment for advanced HER2-positive gastric cancer, but it still suffers from limited therapeutic efficiency and serious side effects, which are usually due to the poor delivery efficiency and the drug resistance of tumor cells to the chemotherapeutic drugs. Herein, a type of ultrasound microbubble for simultaneous delivery of sonosensitizers and therapeutic antibodies to achieve targeting combination of sonodynamic therapy and antibody therapy of HER2-positive gastric cancer was constructed from pyropheophorbide-lipid followed by trastuzumab conjugation (TP MBs). In vitro and in vivo studies showed that TP MBs had good biological safety, and their in vivo delivery can be monitored by ultrasound/fluorescence bimodal imaging. With ultrasound (US) located at the tumor area, TP MBs can be converted into nanoparticles (TP NPs) in situ by US-targeted microbubble destruction; plus the enhanced permeability and retention effects and the targeting effects of trastuzumab, the enrichment of sonosensitizers and antibodies in the tumor tissue can be greatly enhanced (∼2.1 times). When combined with ultrasound, TP MBs can not only increase the uptake of sonosensitizers in HER2-positive gastric cancer NCI-N87 cells but also efficiently generate singlet oxygen to greatly increase the killing effect on cells, obviously inhibiting the tumor growth in HER2-positive gastric cancer NCI-N87 cell models with a tumor inhibition rate up to 79.3%. Overall, TP MBs combined with US provided an efficient way for co-delivery of sonosensitizers and antibodies, greatly enhancing the synergistic therapeutic effect on HER2-positive gastric cancer while effectively reducing the side effects.
Collapse
Affiliation(s)
- Lihong Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Jinxia Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Menghong Xu
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Lulu Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Qingshuang Tang
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Jing Chen
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Ming Gong
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Huiyu Ge
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
- Department of Ultrasound Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing100020, China
| | - Shumin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Ligang Cui
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| |
Collapse
|
13
|
Xu Y, Ren Y, Zhu Y, Zhang X, Wu Z, Mei Z, Hu J, Li Y, Chen X, Huang N, Xu X, Wang H, Tian J. Preparation, characterization, and antibacterial activity of tigecycline-loaded, ultrasound-activated microbubbles. Pharm Dev Technol 2021; 27:1-8. [PMID: 34895029 DOI: 10.1080/10837450.2021.2017967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Central nervous system infectious disease caused by the multidrug-resistant Acinetobacter baumannii (AB) seriously threatens human life in clinic. Tigecycline has good sensitivity in killing AB, but due to its wide tissue distribution and blood-brain barrier, concentration in cerebrospinal fluid is low, therefore, the clinical effect is limited. Herein, we designed micro-bubbled tigecycline, aimed to enhance its anti-MDRAB effects under ultrasound. The lipid microbubbles with different ratios of lipids to drugs (a ratio of 10:1, 20:1, and 40:1) were prepared by the mechanical shaking method. The morphology, zeta potential and particle size of microbubbles were tested to screen out the much better formulation. Encapsulation efficiency and drug loading amount were determined by ultracentrifugation combined with high-performance liquid chromatography. Then the in vitro antibacterial activity against AB was conducted using the selected ultrasound-activated microbubble. Results showed the selected microbubbles with high encapsulation efficiency and good stability. The mechanical shaking method is feasible for preparation of drug-loaded and ultrasound-activated lipid microbubbles. Using 0.2 mg/mL microbubbles, combined with 1 MHz, 2.5 W/cm2 and 1 min of ultrasound exhibited a potent anit-AB in vitro. This study indicates that tigecycline treatment in form of ultrasound-activated microbubble is a promising strategy against AB infections.
Collapse
Affiliation(s)
- Yanyan Xu
- Department of Pharmacy, Lishui Hospital of Zhejiang University, Lishui, China
| | - Yajun Ren
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yanyan Zhu
- Department of Pharmacy, Lishui Hospital of Zhejiang University, Lishui, China
| | - Xiayan Zhang
- Department of Pharmacy, Lishui Hospital of Zhejiang University, Lishui, China
| | - Zhenbo Wu
- Department of Pharmacy, Lishui Hospital of Zhejiang University, Lishui, China
| | - Ziwei Mei
- Department of Pharmacy, Lishui Hospital of Zhejiang University, Lishui, China
| | - Jieru Hu
- Department of Pharmacy, Lishui Hospital of Zhejiang University, Lishui, China
| | - Yuhe Li
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Xiaoyu Chen
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Ni Huang
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Xi Xu
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Haixiang Wang
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Jilai Tian
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Ho YJ, Huang CC, Fan CH, Liu HL, Yeh CK. Ultrasonic technologies in imaging and drug delivery. Cell Mol Life Sci 2021; 78:6119-6141. [PMID: 34297166 PMCID: PMC11072106 DOI: 10.1007/s00018-021-03904-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Ultrasonic technologies show great promise for diagnostic imaging and drug delivery in theranostic applications. The development of functional and molecular ultrasound imaging is based on the technical breakthrough of high frame-rate ultrasound. The evolution of shear wave elastography, high-frequency ultrasound imaging, ultrasound contrast imaging, and super-resolution blood flow imaging are described in this review. Recently, the therapeutic potential of the interaction of ultrasound with microbubble cavitation or droplet vaporization has become recognized. Microbubbles and phase-change droplets not only provide effective contrast media, but also show great therapeutic potential. Interaction with ultrasound induces unique and distinguishable biophysical features in microbubbles and droplets that promote drug loading and delivery. In particular, this approach demonstrates potential for central nervous system applications. Here, we systemically review the technological developments of theranostic ultrasound including novel ultrasound imaging techniques, the synergetic use of ultrasound with microbubbles and droplets, and microbubble/droplet drug-loading strategies for anticancer applications and disease modulation. These advancements have transformed ultrasound from a purely diagnostic utility into a promising theranostic tool.
Collapse
Affiliation(s)
- Yi-Ju Ho
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|