1
|
Kamal R, Awasthi A, Paul P, Mir MS, Singh SK, Dua K. Novel drug delivery systems in colorectal cancer: Advances and future prospects. Pathol Res Pract 2024; 262:155546. [PMID: 39191194 DOI: 10.1016/j.prp.2024.155546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Colorectal cancer (CRC) is an abnormal proliferation of cells within the colon and rectum, leading to the formation of polyps and disruption of mucosal functions. The disease development is influenced by a combination of factors, including inflammation, exposure to environmental mutagens, genetic alterations, and impairment in signaling pathways. Traditional treatments such as surgery, radiation, and chemotherapy are often used but have limitations, including poor solubility and permeability, treatment resistance, side effects, and post-surgery issues. Novel Drug Delivery Systems (NDDS) have emerged as a superior alternative, offering enhanced drug solubility, precision in targeting cancer cells, and regulated drug release. Thereby addressing the shortcomings of conventional therapies and showing promise for more effective CRC management. The present review sheds light on the pathogenesis, signaling pathways, biomarkers, conventional treatments, need for NDDS, and application of NDDS against CRC. Additionally, clinical trials, ongoing clinical trials, marketed formulations, and patents on CRC are also covered in the present review.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab 142001, India; School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Priyanka Paul
- Department of Pharmaceutical Science, PCTE Group of Institute, Ludhiana, Punjab, India
| | - Mohammad Shabab Mir
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
2
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
3
|
Yadav R, Bhawale R, Srivastava V, Pardhi E, Bhalerao HA, Sonti R, Mehra NK. Innovative Nanoparticulate Strategies in Colon Cancer Treatment: A Paradigm Shift. AAPS PharmSciTech 2024; 25:52. [PMID: 38429601 DOI: 10.1208/s12249-024-02759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024] Open
Abstract
As a major public health issue, colorectal cancer causes 9.4% of total cancer-related deaths and comprises 10% of new cancer diagnoses worldwide. In the year 2023, an estimated 153,020 people are expected to receive an identification of colorectal cancer (CRC), resulting in roughly 52,550 fatalities anticipated as a result of this illness. Among those impacted, approximately 19,550 cases and 3750 deaths are projected to occur in individuals under the age of 50. Irinotecan (IRN) is a compound derived from the chemical structure of camptothecin, a compound known for its action in inhibiting DNA topoisomerase I. It is employed in the treatment strategy for CRC therapies. Comprehensive in vivo and in vitro studies have robustly substantiated the anticancer efficacy of these compounds against colon cancer cell lines. Blending irinotecan in conjunction with other therapeutic cancer agents such as oxaliplatin, imiquimod, and 5 fluorouracil enhanced cytotoxicity and improved chemotherapeutic efficacy. Nevertheless, it is linked to certain serious complications and side effects. Utilizing nano-formulated prodrugs within "all-in-one" carrier-free self-assemblies presents an effective method to modify the pharmacokinetics and safety portfolio of cytotoxic chemotherapeutics. This review focuses on elucidating the mechanism of action, exploring synergistic effects, and innovating novel delivery approaches to enhance the therapeutic efficacy of irinotecan.
Collapse
Affiliation(s)
- Rati Yadav
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Rohit Bhawale
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Vaibhavi Srivastava
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Ekta Pardhi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Harshada Anil Bhalerao
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India.
| |
Collapse
|
4
|
Roy M, Alix C, Burlaud-Gaillard J, Fouan D, Raoul W, Bouakaz A, Blanchard E, Lecomte T, Viaud-Massuard MC, Sasaki N, Serrière S, Escoffre JM. Delivery of Anticancer Drugs Using Microbubble-Assisted Ultrasound in a 3D Spheroid Model. Mol Pharm 2024; 21:831-844. [PMID: 38174896 DOI: 10.1021/acs.molpharmaceut.3c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Tumor spheroids are promising three-dimensional (3D) in vitro tumor models for the evaluation of drug delivery methods. The design of noninvasive and targeted drug methods is required to improve the intratumoral bioavailability of chemotherapeutic drugs and reduce their adverse off-target effects. Among such methods, microbubble-assisted ultrasound (MB-assisted US) is an innovative modality for noninvasive targeted drug delivery. The aim of the present study is to evaluate the efficacy of this US modality for the delivery of bleomycin, doxorubicin, and irinotecan in colorectal cancer (CRC) spheroids. MB-assisted US permeabilized the CRC spheroids to propidium iodide, which was used as a drug model without affecting their growth and viability. Histological analysis and electron microscopy revealed that MB-assisted US affected only the peripheral layer of the CRC spheroids. The acoustically mediated bleomycin delivery induced a significant decrease in CRC spheroid growth in comparison to spheroids treated with bleomycin alone. However, this US modality did not improve the therapeutic efficacy of doxorubicin and irinotecan on CRC spheroids. In conclusion, this study demonstrates that tumor spheroids are a relevant approach to evaluate the efficacy of MB-assisted US for the delivery of chemotherapeutics.
Collapse
Affiliation(s)
- Marie Roy
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | - Corentin Alix
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | - Julien Burlaud-Gaillard
- Inserm U1259, Université de Tours et CHRU de Tours & Plateforme IBiSA des Microscopies, PPF ASB, CHRU de Tours, 37032 Tours, France
| | - Damien Fouan
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | - William Raoul
- Inserm UMR 1069, Nutrition Croissance et Cancer (N2C), Université de Tours, 37032 Tours, France
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | - Emmanuelle Blanchard
- Inserm U1259, Université de Tours et CHRU de Tours & Plateforme IBiSA des Microscopies, PPF ASB, CHRU de Tours, 37032 Tours, France
| | - Thierry Lecomte
- Inserm UMR 1069, Nutrition Croissance et Cancer (N2C), Université de Tours, 37032 Tours, France
- Department of Hepato-Gastroenterology & Digestive Oncology, CHRU de Tours, 37000 Tours, France
| | | | - Noboru Sasaki
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, 060-0818 Sapporo, Japan
| | - Sophie Serrière
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
- Département d'Imagerie Préclinique, Plateforme Scientifique et Technique Analyse des Systèmes Biologiques, Université de Tours, 37032 Tours, France
| | | |
Collapse
|
5
|
Liu M, Dasgupta A, Qu N, Rama E, Kiessling F, Lammers T. Strategies to Maximize Anthracycline Drug Loading in Albumin Microbubbles. ACS Biomater Sci Eng 2024; 10:82-88. [PMID: 34931809 DOI: 10.1021/acsbiomaterials.1c01203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human serum albumin (HSA) microbubbles (MBs) are attracting increasing attention as image-guided and stimuli-responsive drug delivery systems. To better understand and maximize drug encapsulation in HSA MBs, we investigated the impact of the loading strategy and the drugs' physicochemical properties on their entrapment in the MB shell. Regarding loading strategy, we explored preloading, i.e., incubating drugs with HSA prior to MB formation, as well as postloading, i.e., incubating drugs with preformed MB. Both strategies were utilized to encapsulate six anthracyclines with different physicochemical properties. We demonstrate that drug loading in the HSA MB shell profits from preloading as well as from employing drugs with high intrinsic HSA binding affinity. These findings exemplify the potential of exploiting the natural bioconjugation interactions between drugs and HSA to formulate optimally loaded MBs, and they promote the development of HSA MBs for ultrasound-triggered drug delivery.
Collapse
Affiliation(s)
- Mengjiao Liu
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Forckenbeckstrasse 55, Aachen 52074, Germany
| | - Anshuman Dasgupta
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Forckenbeckstrasse 55, Aachen 52074, Germany
| | - Na Qu
- Liaoning University, No. 66 Chongshan Middle Road, Huanggu District, Shenyang 110036, China
| | - Elena Rama
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Forckenbeckstrasse 55, Aachen 52074, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Forckenbeckstrasse 55, Aachen 52074, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Forckenbeckstrasse 55, Aachen 52074, Germany
| |
Collapse
|
6
|
Bagheri M, Zandieh MA, Daryab M, Samaei SS, Gholami S, Rahmanian P, Dezfulian S, Eary M, Rezaee A, Rajabi R, Khorrami R, Salimimoghadam S, Hu P, Rashidi M, Ardakan AK, Ertas YN, Hushmandi K. Nanostructures for site-specific delivery of oxaliplatin cancer therapy: Versatile nanoplatforms in synergistic cancer therapy. Transl Oncol 2024; 39:101838. [PMID: 38016356 DOI: 10.1016/j.tranon.2023.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023] Open
Abstract
As a clinically approved treatment strategy, chemotherapy-mediated tumor suppression has been compromised, and in spite of introducing various kinds of anticancer drugs, cancer eradication with chemotherapy is still impossible. Chemotherapy drugs have been beneficial in improving the prognosis of cancer patients, but after resistance emerged, their potential disappeared. Oxaliplatin (OXA) efficacy in tumor suppression has been compromised by resistance. Due to the dysregulation of pathways and mechanisms in OXA resistance, it is suggested to develop novel strategies for overcoming drug resistance. The targeted delivery of OXA by nanostructures is described here. The targeted delivery of OXA in cancer can be mediated by polymeric, metal, lipid and carbon nanostructures. The advantageous of these nanocarriers is that they enhance the accumulation of OXA in tumor and promote its cytotoxicity. Moreover, (nano)platforms mediate the co-delivery of OXA with drugs and genes in synergistic cancer therapy, overcoming OXA resistance and improving insights in cancer patient treatment in the future. Moreover, smart nanostructures, including pH-, redox-, light-, and thermo-sensitive nanostructures, have been designed for OXA delivery and cancer therapy. The application of nanoparticle-mediated phototherapy can increase OXA's potential in cancer suppression. All of these subjects and their clinical implications are discussed in the current review.
Collapse
Affiliation(s)
- Mohsen Bagheri
- Radiology Resident, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Setareh Samaei
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Babol Branch, Islamic Azad University, Babol, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sadaf Dezfulian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Eary
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Peng Hu
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Alireza Khodaei Ardakan
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
7
|
Cheng P, Ming S, Cao W, Wu J, Tian Q, Zhu J, Wei W. Recent advances in sonodynamic therapy strategies for pancreatic cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1945. [PMID: 38403882 DOI: 10.1002/wnan.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Pancreatic cancer, a prevalent malignancy of the digestive system, has a poor 5-year survival rate of around 10%. Although numerous minimally invasive alternative treatments, including photothermal therapy and photodynamic therapy, have shown effectiveness compared with traditional surgical procedures, radiotherapy, and chemotherapy. However, the application of these alternative treatments is constrained by their depth of penetration, making it challenging to treat pancreatic cancer situated deep within the tissue. Sonodynamic therapy (SDT) has emerged as a promising minimally invasive therapy method that is particularly potent against deep-seated tumors such as pancreatic cancer. However, the unique characteristics of pancreatic cancer, including a dense surrounding matrix, high reductivity, and a hypoxic tumor microenvironment, impede the efficient application of SDT. Thus, to guide the evolution of SDT for pancreatic cancer therapy, this review addresses these challenges, examines current strategies for effective SDT enhancement for pancreatic cancer, and investigates potential future advances to boost clinical applicability. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shuai Ming
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Cao
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jixiao Wu
- School of Materials and Chemistry, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Qiwei Tian
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jing Zhu
- School of Materials and Chemistry, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Wei Wei
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
8
|
Coppola A, Grasso D, Fontana F, Piacentino F, Minici R, Laganà D, Ierardi AM, Carrafiello G, D’Angelo F, Carcano G, Venturini M. Innovative Experimental Ultrasound and US-Related Techniques Using the Murine Model in Pancreatic Ductal Adenocarcinoma: A Systematic Review. J Clin Med 2023; 12:7677. [PMID: 38137745 PMCID: PMC10743777 DOI: 10.3390/jcm12247677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a cancer with one of the highest mortality rates in the world. Several studies have been conductedusing preclinical experiments in mice to find new therapeutic strategies. Experimental ultrasound, in expert hands, is a safe, multifaceted, and relatively not-expensive device that helps researchers in several ways. In this systematic review, we propose a summary of the applications of ultrasonography in a preclinical mouse model of PDAC. Eighty-eight studies met our inclusion criteria. The included studies could be divided into seven main topics: ultrasound in pancreatic cancer diagnosis and progression (n: 21); dynamic contrast-enhanced ultrasound (DCE-US) (n: 5); microbubble ultra-sound-mediated drug delivery; focused ultrasound (n: 23); sonodynamic therapy (SDT) (n: 7); harmonic motion elastography (HME) and shear wave elastography (SWE) (n: 6); ultrasound-guided procedures (n: 9). In six cases, the articles fit into two or more sections. In conclusion, ultrasound can be a really useful, eclectic, and ductile tool in different diagnostic areas, not only regarding diagnosis but also in therapy, pharmacological and interventional treatment, and follow-up. All these multiple possibilities of use certainly represent a good starting point for the effective and wide use of murine ultrasonography in the study and comprehensive evaluation of pancreatic cancer.
Collapse
Affiliation(s)
- Andrea Coppola
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Dario Grasso
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Federico Fontana
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Filippo Piacentino
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Roberto Minici
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy; (R.M.)
| | - Domenico Laganà
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy; (R.M.)
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Maria Ierardi
- Radiology Unit, IRCCS Ca Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | | | - Fabio D’Angelo
- Department of Medicine and Surgery, Insubria University, 21100 Varese, Italy;
- Orthopedic Surgery Unit, ASST Sette Laghi, 21100 Varese, Italy
| | - Giulio Carcano
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
- Emergency and Transplant Surgery Department, ASST Sette Laghi, 21100 Varese, Italy
| | - Massimo Venturini
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| |
Collapse
|
9
|
Xu X, Zhang M, Liu X, Chai M, Diao L, Ma L, Nie S, Xu M, Wang Y, Mo F, Liu M. Probiotics formulation and cancer nanovaccines show synergistic effect in immunotherapy and prevention of colon cancer. iScience 2023; 26:107167. [PMID: 37456845 PMCID: PMC10338235 DOI: 10.1016/j.isci.2023.107167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/26/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Probiotics play essential roles in immune modulation. Combining probiotics with cancer vaccines potentially can achieve a synergistic effect. To maximize the efficacy of probiotics, proper probiotics formulation is necessary. Herein, Lactobacillus rhamnosus and Bifidobacterium longum are coated with lipid membrane to achieve the goal of losing less activity and bettering colonization in colon. In the subcutaneous transplanted colon cancer mouse model, probiotics formulation showed potent preventive and therapeutic efficacy, and the efficacy could be further improved by combining with cancer nanovaccines. Probiotics formulation can perform as immune adjuvants to enhance the innate immune response or as in-situ cancer vaccines. In the study of preventing chemical-induced orthotopic colon cancer model, probiotics formulation alone efficiently reduced tumor number in colon and the efficacy is improved by combining with cancer nanovaccines. All in all, the studies demonstrated that probiotics formulation can assist to maximize the efficacy of cancer nanovaccines.
Collapse
Affiliation(s)
- Xiangxiang Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, People’s Republic of China
- Suzhou Ersheng Biopharmaceutical Co., Ltd, Suzhou 215123, People’s Republic of China
| | - Meng Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Xiaoyan Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Mingze Chai
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Lu Diao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, People’s Republic of China
- Suzhou Ersheng Biopharmaceutical Co., Ltd, Suzhou 215123, People’s Republic of China
| | - Lin Ma
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, People’s Republic of China
| | - Shuang Nie
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Rd, Shanghai 200433, People’s Republic of China
| | - Minghao Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
- Suzhou Ersheng Biopharmaceutical Co., Ltd, Suzhou 215123, People’s Republic of China
| | - Yipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Fengfeng Mo
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Rd, Shanghai 200433, People’s Republic of China
| | - Mi Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, People’s Republic of China
- Suzhou Ersheng Biopharmaceutical Co., Ltd, Suzhou 215123, People’s Republic of China
| |
Collapse
|
10
|
Hong Park J, Lee S, Jeon H, Hoon Kim J, Jung Kim D, Im M, Chul Lee B. A novel convex acoustic lens-attached ultrasound drug delivery system and its testing in a murine melanoma subcutaneous modelo. Int J Pharm 2023:123118. [PMID: 37302671 DOI: 10.1016/j.ijpharm.2023.123118] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Target-specific drug release is indispensable to improve chemotherapeutic efficacy as it enhances drug uptake and penetration into tumors. Sono-responsive drug-loaded nano-/micro-particles are a promising solution for achieving target specificity by exposing them to ultrasound near tumors. However, the complicated synthetic processes and limited ultrasound (US) exposure conditions, such as limited control of ultrasound focal depth and acoustic power, prevent the practical application of this approach in clinical practice. Here, we propose a convex acoustic lens-attached US (CALUS) as a simple, economic, and efficient alternative of focused US for drug delivery system (DDS) application. The CALUS was characterized both numerically and experimentally using a hydrophone. In vitro, microbubbles (MBs) inside microfluidic channels were destroyed using the CALUS with various acoustic parameters (acoustic pressure [P], pulse repetition frequency [PRF], and duty cycle) and flow velocity. In vivo, tumor inhibition was evaluated using melanoma-bearing mice by characterizing tumor growth rate, animal weight, and intratumoral drug concentration with/without CALUS DDS. US beams were measured to be efficiently converged by CALUS, which was consistent with our simulation results. The acoustic parameters were optimized through the CALUS-induced MB destruction test (P = 2.34 MPa, PRF = 100 kHz, and duty cycle = 9%); this optimal parameter combination successfully induced MB destruction inside the microfluidic channel with an average flow velocity of up to 9.6 cm/s. The CALUS also enhanced the therapeutic effects of an antitumor drug (doxorubicin) in vivo in a murine melanoma model. The combination of the doxorubicin and the CALUS inhibited tumor growth by ∼55% more than doxorubicin alone, clearly indicating synergistic antitumor efficacy. Our tumor growth inhibition performance was better than other methods based on drug carriers, even without a time-consuming and complicated chemical synthesis process. This result suggests that our novel, simple, economic, and efficient target-specific DDS may offer a transition from preclinical research to clinical trials and a potential treatment approach for patient-centered healthcare.
Collapse
Affiliation(s)
- Jun Hong Park
- Bionics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Seunghyun Lee
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Hoyoon Jeon
- Bionics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jung Hoon Kim
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Da Jung Kim
- Metabolomics Core Facility, Department of Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Maesoon Im
- Brain Science Institute, KIST, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science & Technology (UST), Seoul 02792, Republic of Korea
| | - Byung Chul Lee
- Bionics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science & Technology (UST), Seoul 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
11
|
Haram M, Snipstad S, Berg S, Mjønes P, Rønne E, Lage J, Mühlenpfordt M, Davies CDL. Ultrasound and Microbubbles Increase the Uptake of Platinum in Murine Orthotopic Pancreatic Tumors. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1275-1287. [PMID: 36842903 DOI: 10.1016/j.ultrasmedbio.2023.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/21/2022] [Accepted: 01/19/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Currently available cytotoxic treatments have limited effect on pancreatic ductal adenocarcinoma (PDAC) because desmoplastic stroma limits drug delivery. Efforts have been made to overcome these barriers by drug targeting the tumor microenvironment. Results so far are promising, but without clinical impact. Our aim was to investigate whether ultrasound and microbubbles could improve the uptake and therapeutic response of conventional chemotherapy. METHODS Orthotopic pancreatic tumors growing in mice were treated with commercially available FOLFIRINOX (fluorouracil, irinotecan, oxaliplatin and calcium folinate) and SonoVue microbubbles combined with focused ultrasound. Tumor uptake of platinum (Pt) was measured by inductively coupled plasma mass spectroscopy (ICP-MS), and tumor volumes were measured by ultrasound imaging. DISCUSSION Uptake of Pt, the active ingredient of oxaliplatin, was significantly increased after ultrasound treatment of orthotopic PDAC tumors. Multiple injections with FOLFIRONOX increased the amount of Pt in tumors. However, the enhanced accumulation did not improve therapeutic response. Increased uptake of Pt confirms that ultrasound and microbubbles have potential in clinical practice with existing drugs. CONCLUSION The lack of therapeutic response, despite increased uptake in tumor tissue, emphasizes the importance of studying how to overcome stromal barriers.
Collapse
Affiliation(s)
- Margrete Haram
- Department of Radiology and Nuclear Medicine, St. Olav's Hospital-Trondheim University Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital-Trondheim University Hospital, Trondheim, Norway.
| | - Sofie Snipstad
- Cancer Clinic, St. Olav's Hospital-Trondheim University Hospital, Trondheim, Norway; Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Sigrid Berg
- Department of Health Research, SINTEF Digital, Trondheim, Norway
| | - Patricia Mjønes
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Pathology, St. Olav's Hospital-Trondheim University Hospital, Trondheim, Norway
| | - Elin Rønne
- Department of Pathology, St. Olav's Hospital-Trondheim University Hospital, Trondheim, Norway
| | - Jessica Lage
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Melina Mühlenpfordt
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
12
|
Li H, Lv W, Zhang Y, Feng Q, Wu H, Su C, Shu H, Nie F. PLGA-PEI nanobubbles carrying PDLIM5 siRNA inhibit EGFR-TKI-resistant NSCLC cell migration and invasion ability using UTND technology. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
13
|
Cao X, Li R, Wang H, Guo C, Wang S, Chen X, Zhao R. Novel indole–chalcone platinum(IV) complexes as tubulin polymerization inhibitors to overcome oxaliplatin resistance in colorectal cancer. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Effect of acoustic cluster therapy (ACT®) combined with chemotherapy in a patient-derived xenograft mouse model of pancreatic cancer. J Control Release 2022; 352:1134-1143. [PMID: 36372388 DOI: 10.1016/j.jconrel.2022.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/06/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022]
Abstract
Pancreatic ductal adenocarcinomas respond poorly to chemotherapy, in part due to the dense tumor stroma that hinders drug delivery. Ultrasound (US) in combination with microbubbles has previously shown promise as a means to improve drug delivery, and the therapeutic efficacy of ultrasound-mediated drug delivery is currently being evaluated in multiple clinical trials. However, most of these utilize echogenic contrast agents engineered for imaging, which might not be optimal compared to specialized formulations tailored for drug delivery. In this study, we evaluated the in vivo efficacy of phase-shifting microbubble-microdroplet clusters that, upon insonation, form bubbles in the size range of 20-30 μm. We developed a patient-derived xenograft model of pancreatic cancer implanted in mice that largely retained the stromal content of the originating tumor and compared tumor growth in mice given chemotherapeutics (nab-paclitaxel plus gemcitabine or liposomal irinotecan) with mice given the same chemotherapeutics in addition to ultrasound and acoustic cluster therapy. We found that acoustic cluster therapy significantly improved the effect of both chemotherapeutic regimens and resulted in 7.2 times higher odds of complete remission of the tumor compared to the chemotherapeutics alone.
Collapse
|