1
|
Qu L, Cui G, Sun Y, Ye R, Sun Y, Meng F, Wang S, Zhong Z. A Biomimetic Autophagosomes-Based Nanovaccine Boosts Anticancer Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409590. [PMID: 39194369 DOI: 10.1002/adma.202409590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Personalized cancer vaccines based on tumor cell lysates offer promise for cancer immunotherapy yet fail to elicit a robust therapeutic effect due to the weak immunogenicity of tumor antigens. Autophagosomes, obtained from pleural effusions and ascites of cancer patients, have been identified as abundant reservoirs of tumor neoantigens that exhibit heightened immunogenicity. However, their potential as personalized cancer vaccines have been constrained by suboptimal lymphatic-targeting performances and challenges in antigen-presenting cell endocytosis. Here,a reinforced biomimetic autophagosome-based (BAPs) nanovaccine generated by precisely amalgamating autophagosome-derived neoantigens and two types of adjuvants capable of targeting lymph nodes is developed to potently elicit antitumor immunity. The redox-responsive BAPs facilitate cytosolic vaccine opening within antigen-presenting cells, thereby exposing adjuvants and antigens to stimulate a strong immune response. BAPs evoke broad-spectrum T-cell responses, culminating in the effective eradication of 71.4% of established tumors. Notably, BAPs vaccination triggers enduring T-cell responses that confer robust protection, with 100% of mice shielded against tumor rechallenge and a significant reduction in tumor incidence by 87.5%. Furthermore, BAPs synergize with checkpoint blockade therapy to inhibit tumor growth in the poorly immunogenic breast cancer model. The biomimetic approach presents a powerful nanovaccine formula with high versatility for personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Liping Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Guanhong Cui
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Yinping Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Ruonan Ye
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Yu Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Shenqiang Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
2
|
Zhang P, Wang T, Cui G, Ye R, Wan W, Liu T, Zheng Y, Zhong Z. Systemic Multifunctional Nanovaccines for Potent Personalized Immunotherapy of Acute Myeloid Leukemia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407189. [PMID: 39171954 DOI: 10.1002/adma.202407189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/30/2024] [Indexed: 08/23/2024]
Abstract
Hematological malignancies (HM) like acute myeloid leukemia (AML) are often intractable. Cancer vaccines possibly inducing robust and broad anti-tumor immune responses may be a promising treatment option for HM. Few effective vaccines against blood cancers are, however, developed to date partly owing to insufficient stimulation of dendritic cells (DCs) in the body and lacking appropriate tumor antigens (Ags). Here it is found that systemic multifunctional nanovaccines consisting of nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and Toll-like receptor 9 (TLR9) agonists - muramyl dipeptide (MDP) and CpG, and tumor cell lysate (TCL) as Ags (MCA-NV) induce potent and broad immunity against AML. MCA-NV show complementary stimulation of DCs and prime homing to lymphoid organs following systemic administration. Of note, in orthotopic AML mouse models, intravenous infusion of different vaccine formulations elicits substantially higher anti-AML efficacies than subcutaneous administration. Systemic MCA-NV cure 78% of AML mice and elicit long-term immune memory with 100% protection from rechallenging AML cells. Systemic MCA-NV can also serve as prophylactic vaccines against the same AML. These systemic nanovaccines utilizing patient TCL as Ags and dual adjuvants to elicit strong, durable, and broad immune responses can provide a personalized immunotherapeutic strategy against AML and other HM.
Collapse
Affiliation(s)
- Peng Zhang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Tanzhen Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, P. R. China
| | - Guanhong Cui
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Ruonan Ye
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Wenjun Wan
- College of Pharmaceutical Sciences, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, Soochow University, Suzhou, 215123, P. R. China
| | - Tianhui Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, P. R. China
| | - Yiran Zheng
- College of Pharmaceutical Sciences, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, Soochow University, Suzhou, 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
- College of Pharmaceutical Sciences, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
3
|
Cui G, Sun Y, Qu L, Shen C, Sun Y, Meng F, Zheng Y, Zhong Z. Uplifting Antitumor Immunotherapy with Lymph-Node-Targeted and Ratio-Controlled Codelivery of Tumor Cell Lysate and Adjuvant. Adv Healthc Mater 2024; 13:e2303690. [PMID: 38458152 DOI: 10.1002/adhm.202303690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cancer vaccines provide a potential strategy to cure patients. Their clinical utilization and efficacy is, however, limited by incomplete coverage of tumor neoantigens and unspecific and restricted activation of dendritic cells (DCs). Tumor cell lysates (TCLs) containing a broad spectrum of neoantigens, while are considered ideal in formulating personalized vaccines, induce generally poor antigen presentation and transient antitumor immune response. Here, intelligent polymersomal nanovaccines (PNVs) that quantitatively coload, efficiently codeliver, and responsively corelease TCL and CpG adjuvant to lymph node (LN) DCs are developed to boost antigen presentation and to induce specific and robust antitumor immunity. PNVs carrying CpG and ovalbumin (OVA) markedly enhance the maturation, antigen presentation, and downstream T cell activation ability of bone-marrow-derived dendritic cells and induce strong systemic immune response after tail base injection. Remarkably, PNVs carrying CpG and TCL cure 85% of B16-F10 melanoma-bearing mice and generate long-lasting anticancer immune memory at a low dose, protecting all cured mice from tumor rechallenge. These LN-directed PNVs being highly versatile and straightforward opens a new door for personalized cancer vaccines.
Collapse
Affiliation(s)
- Guanhong Cui
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Yinping Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Liping Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Cui Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yu Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Yiran Zheng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
4
|
He M, Zhang M, Xu T, Xue S, Li D, Zhao Y, Zhi F, Ding D. Enhancing photodynamic immunotherapy by reprograming the immunosuppressive tumor microenvironment with hypoxia relief. J Control Release 2024; 368:233-250. [PMID: 38395154 DOI: 10.1016/j.jconrel.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Tumor hypoxia impairs the generation of reactive oxygen species and the induction of immunogenic cell death (ICD) for photodynamic therapy (PDT), thus impeding its efficacy and the subsequent immunotherapy. In addition, hypoxia plays a critical role in forming immunosuppressive tumor microenvironments (TME) by regulating the infiltration of immunosuppressive tumor-associated macrophages (TAMs) and the expression of programmed death ligand 1 (PD-L1). To simultaneously tackle these issues, a MnO2-containing albumin nanoplatform co-delivering IR780, NLG919, and a paclitaxel (PTX) dimer is designed to boost photodynamic immunotherapy. The MnO2-catalyzed oxygen supply bolsters the efficacy of PDT and PTX-mediated chemotherapy, collectively amplifying the induction of ICD and the expansion of tumor-specific cytotoxic T lymphocytes (CTLs). More importantly, hypoxia releif reshapes the immunosuppressive TME via down-regulating the intratumoral infiltration of M2-type TAMs and the PD-L1 expression of tumor cells to enhance the infiltration and efficacy of CTLs in combination with immune checkpoint blockade (ICB) by NLG919, consequently eradicating primary tumors and almost completely preventing tumor relapse and metastasis. This study sets an example of enhanced immunotherapy for breast cancers through dual ICD induction and simultaneous immunosuppression modulation via both hypoxia relief and ICB, providing a strategy for the treatment of other hypoxic and immunosuppressive cancers.
Collapse
Affiliation(s)
- Mengying He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Mengyao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tao Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin D02 NY74, Ireland
| | - Shujuan Xue
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Dazhao Li
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou 213003, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yanan Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Feng Zhi
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou 213003, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.
| | - Dawei Ding
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
5
|
Guo Y, Gao F, Ahmed A, Rafiq M, Yu B, Cong H, Shen Y. Immunotherapy: cancer immunotherapy and its combination with nanomaterials and other therapies. J Mater Chem B 2023; 11:8586-8604. [PMID: 37614168 DOI: 10.1039/d3tb01358h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Immunotherapy is a new type of tumor treatment after surgery, radiotherapy and chemotherapy, and can be used to manage and destroy tumor cells through activating or strengthening the immune response. Immunotherapy has the benefits of a low recurrence rate and high specificity compared to traditional treatment methods. Immunotherapy has developed rapidly in recent years and has become a research hotspot. Currently, chimeric antigen receptor T-cell immunotherapy and immune checkpoint inhibitors are the most effective tumor immunotherapies in clinical practice. While tumor immunotherapy brings hope to patients, it also faces some challenges and still requires continuous research and progress. Combination therapy is the future direction of anti-tumor treatment. In this review, the main focus is on an overview of the research progress of immune checkpoint inhibitors, cellular therapies, tumor vaccines, small molecule inhibitors and oncolytic virotherapy in tumor treatment, as well as the combination of immunotherapy with other treatments.
Collapse
Affiliation(s)
- Yuanyuan Guo
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Fengyuan Gao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Adeel Ahmed
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Muhammad Rafiq
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
6
|
Recent applications of phase-change materials in tumor therapy and theranostics. BIOMATERIALS ADVANCES 2023; 147:213309. [PMID: 36739784 DOI: 10.1016/j.bioadv.2023.213309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Phase-change materials (PCMs) are a type of special material which can store and release a large amount of thermal energy without any significant temperature change. They are emerging in recent years as a promising functional material in tumor therapy and theranostics due to their accurate responses to the temperature variations, biocompatibility and low toxicity. In this review, we will introduce the main types of PCMs and their desirable physiochemical properties for biomedical applications, and highlight the recent progress of PCM's applications in the modulated release of antitumor drugs, with special attentions paid to various ways to initiate temperature-dependent phase change, the concomitant thermal therapy and its combination with or activation of other therapies, particularly unconventional therapies. We will also summarize PCM's recent applications in tumor theranostics, where both drugs and imaging probes are delivered by PCMs for controlled drug release and imaging-guided therapy. Finally, the future perspectives and potential limitations of harnessing PCMs in tumor therapy will be discussed.
Collapse
|
7
|
He M, Wang M, Xu T, Zhang M, Dai H, Wang C, Ding D, Zhong Z. Reactive oxygen species-powered cancer immunotherapy: Current status and challenges. J Control Release 2023; 356:623-648. [PMID: 36868519 DOI: 10.1016/j.jconrel.2023.02.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
Reactive oxygen species (ROS) are crucial signaling molecules that can arouse immune system. In recent decades, ROS has emerged as a unique therapeutic strategy for malignant tumors as (i) it can not only directly reduce tumor burden but also trigger immune responses by inducing immunogenic cell death (ICD); and (ii) it can be facilely generated and modulated by radiotherapy, photodynamic therapy, sonodynamic therapy and chemodynamic therapy. The anti-tumor immune responses are, however, mostly downplayed by the immunosuppressive signals and dysfunction of effector immune cells within the tumor microenvironment (TME). The past years have seen fierce developments of various strategies to power ROS-based cancer immunotherapy by e.g. combining with immune checkpoints inhibitors, tumor vaccines, and/or immunoadjuvants, which have shown to potently inhibit primary tumors, metastatic tumors, and tumor relapse with limited immune-related adverse events (irAEs). In this review, we introduce the concept of ROS-powered cancer immunotherapy, highlight the innovative strategies to boost ROS-based cancer immunotherapy, and discuss the challenges in terms of clinical translation and future perspectives.
Collapse
Affiliation(s)
- Mengying He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Mengyuan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tao Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin D02 NY74, Ireland
| | - Mengyao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Dawei Ding
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Zhiyuan Zhong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| |
Collapse
|
8
|
Xu G, Mao Y, Jiang T, Gao B, He B. Structural design strategies of microneedle-based vaccines for transdermal immunity augmentation. J Control Release 2022; 351:907-922. [DOI: 10.1016/j.jconrel.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022]
|
9
|
Kumbhar P, Kole K, Khadake V, Marale P, Manjappa A, Nadaf S, Jadhav R, Patil A, Singh SK, Dua K, Jha NK, Disouza J, Patravale V. Nanoparticulate drugs and vaccines: Breakthroughs and bottlenecks of repurposing in breast cancer. J Control Release 2022; 349:812-830. [PMID: 35914614 DOI: 10.1016/j.jconrel.2022.07.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
Breast cancer (BC) is a highly diagnosed and topmost cause of death in females worldwide. Drug repurposing (DR) has shown great potential against BC by overcoming major shortcomings of approved anticancer therapeutics. However, poor physicochemical properties, pharmacokinetic performance, stability, non-selectivity to tumors, and side effects are severe hurdles in repurposed drug delivery against BC. The variety of nanocarriers (NCs) has shown great promise in delivering repurposed therapeutics for effective treatment of BC via improving solubility, stability, tumor selectivity and reducing toxicity. Besides, delivering repurposed cargos via theranostic NCs can be helpful in the quick diagnosis and treatment of BC. Localized delivery of repurposed candidates through apt NCs can diminish the systemic side effects and improve anti-tumor effectiveness. However, breast tumor variability and tumor microenvironment have created several challenges to nanoparticulate delivery of repurposed cargos. This review focuses on DR as an ingenious strategy to treat BC and circumvent the drawbacks of approved anticancer therapeutics. Various nanoparticulate avenues delivering repurposed therapeutics, including non-oncology cargos and vaccines to target BC effectively, are discussed along with case studies. Moreover, clinical trial information on repurposed medications and vaccines for the treatment of BC is covered along with various obstacles in nanoparticulate drug delivery against cancer that have been so far identified. In a nutshell, DR and drug delivery of repurposed drugs via NCs appears to be a propitious approach in devastating BC.
Collapse
Affiliation(s)
- Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Kapil Kole
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Varsha Khadake
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Pradnya Marale
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India; S. D. Patil Institute of Pharmacy, Urun-Islampur, Maharashtra 416113, India
| | - Arehalli Manjappa
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Sameer Nadaf
- Sant Gajanan Maharaj College of Pharmacy, Mahagaon, Gadhinglaj, Maharashtra, India
| | - Rajendra Jadhav
- Bharati Vidyapeeth (Deemed to be University) Pune, Institute of Management, Kolhapur, India
| | - Ajit Patil
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra 400019, India.
| |
Collapse
|