1
|
Obisi JN, Abimbola ANJ, Babaleye OA, Atidoglo PK, Usin SG, Nwanaforo EO, Patrick-Inezi FS, Fasogbon IV, Chimezie J, Dare CA, Kuti OO, Uti DE, Omeoga HC. Unveiling the future of cancer stem cell therapy: a narrative exploration of emerging innovations. Discov Oncol 2025; 16:373. [PMID: 40120008 PMCID: PMC11929669 DOI: 10.1007/s12672-025-02102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer stem cells (CSCs), are a critical subpopulation within tumours, and are defined by their capacity for self-renewal, differentiation, and tumour initiation. These unique traits contribute to tumour progression, metastasis, and resistance to conventional treatments like chemotherapy and radiotherapy, often resulting in cancer recurrence and poor patient outcomes. As such, CSCs have become focal points in developing advanced cancer therapies. This review highlights progress in CSC-targeted treatments, including chimeric antigen receptor T-cell (CAR-T) therapy, immunotherapy, molecular targeting, and nanoparticle-based drug delivery systems. Plant-derived compounds and gene-editing technologies, such as clustered regularly interspaced short palindromic repeats (CRISPR), are explored for their potential to enhance precision and minimize side effects. Metabolic pathways integral to CSC survival, such as mitochondrial dynamics, mitophagy (regulated by dynamin-related protein 1 [DRP1] and the PINK1/Parkin pathway), one-carbon metabolism, amino acid metabolism (involving enzymes like glutaminase (GLS) and glutamate dehydrogenase (GDH]), lipid metabolism, and hypoxia-induced metabolic reprogramming mediated by hypoxia-inducible factors (HIF-1α and HIF-2α), are examined as therapeutic targets. The adaptability of CSCs through autophagy, metabolic flexibility, and epigenetic regulation by metabolites like α-ketoglutarate, succinate, and fumarate is discussed. Additionally, extracellular vesicles and nicotinamide adenine dinucleotide (NAD⁺) metabolism are identified as pivotal in redox balance, DNA repair, and epigenetic modifications. Addressing challenges such as tumour heterogeneity, immune evasion, and treatment durability requires interdisciplinary collaboration. Advancing CSC-targeted therapies is essential for overcoming drug resistance and preventing cancer relapse, paving the way for transformative cancer treatments. This review underscores the importance of leveraging innovative technologies and fostering collaboration to revolutionize cancer treatment.
Collapse
Affiliation(s)
| | | | - Oluwasegun Adesina Babaleye
- Center for Human Virology and Genomics, Department of Microbiology, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Peter Kwame Atidoglo
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Saviour God'swealth Usin
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Eudora Obioma Nwanaforo
- Environmental Health Science Department, School of Heath Technology, Federal University of Technology Owerri, Owerri, Nigeria
| | | | | | - Joseph Chimezie
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | | - Daniel Ejim Uti
- Department of Biochemistry/Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda.
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | | |
Collapse
|
2
|
Mitranovici MI, Caravia LG, Moraru L, Pușcașiu L. Targeting Cancer Stemness Using Nanotechnology in a Holistic Approach: A Narrative Review. Pharmaceutics 2025; 17:277. [PMID: 40142941 PMCID: PMC11945010 DOI: 10.3390/pharmaceutics17030277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/20/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Increasing evidence shows that a very small population of cancer stem cells (CSCs) is responsible for cancer recurrence, drug resistance, and metastasis. CSCs usually reside in hypoxic tumor regions and are characterized by high tumorigenicity. Their inaccessible nature allows them to avoid the effects of conventional treatments such as chemotherapy, radiotherapy, and surgery. In addition, conventional chemo- and radiotherapy is potentially toxic and could help CSCs to spread and survive. New therapeutic targets against CSCs are sought, including different signaling pathways and distinct cell surface markers. Recent advances in nanotechnology have provided hope for the development of new therapeutic avenues to eradicate CSCs. In this review, we present newly discovered nanoparticles that can be co-loaded with an apoptosis-inducing agent or differentiation-inducing agent, with high stability, cellular penetration, and drug release. We also summarize the molecular characteristics of CSCs and the signaling pathways responsible for their survival and maintenance. Controlled drug release targeting CSCs aims to reduce stemness-related drug resistance, suppress tumor growth, and prevent tumor relapse and metastases.
Collapse
Affiliation(s)
- Melinda-Ildiko Mitranovici
- Department of Anatomy, Faculty of Medicine, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
| | - Laura Georgiana Caravia
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Liviu Moraru
- Department of Anatomy, Faculty of Medicine, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
| | - Lucian Pușcașiu
- Department of Anatomy, Faculty of Medicine, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
| |
Collapse
|
3
|
Liu Y, Sun X, Wei C, Guo S, Song C, Zhang J, Bai J. Targeted Drug Nanodelivery and Immunotherapy for Combating Tumor Resistance. Comb Chem High Throughput Screen 2025; 28:561-581. [PMID: 38676501 DOI: 10.2174/0113862073296206240416060154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 04/29/2024]
Abstract
Chemotherapy resistance is a common cause of tumor treatment failure. Various molecular responses, such as increased expression of efflux transporter proteins, including Pglycoprotein (P-gp), changes in the tumor microenvironment (TME), the role of platelets, and the effects of cancer stem cells (CSCs), can lead to drug resistance. Through extensive research on the mechanisms of drug resistance, more effective anti-resistance drugs and therapeutic approaches are being developed. This review explores drug resistance mechanisms and summarizes relevant anti-resistance drugs. In addition, due to the therapeutic limitations of the aforementioned treatments, new advances in nanocarrier-based combination immunotherapy to address the challenge of drug resistance have been described. Nanocarriers combined with immunotherapy can not only target tumor sites for targeted drug release but also modulate the autoimmune system and enhance immune efficacy, thereby overcoming tumor drug resistance. This review suggests new strategies for overcoming tumor drug resistance and is expected to inform tumor treatment and prognosis.
Collapse
Affiliation(s)
- Yun Liu
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, China
| | - Xinyu Sun
- School of Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chen Wei
- School of Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Shoudong Guo
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China
| | - Chunxiao Song
- Anorectal Department, Weifang people's Hospital, Weifang, 261000, China
| | - Jiangyu Zhang
- school of Chemistry and Chemical Engineering, Xingtai University, Xingtai, 054001, China
| | - Jingkun Bai
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, China
| |
Collapse
|
4
|
Son B, Lee W, Kim H, Shin H, Park HH. Targeted therapy of cancer stem cells: inhibition of mTOR in pre-clinical and clinical research. Cell Death Dis 2024; 15:696. [PMID: 39349424 PMCID: PMC11442590 DOI: 10.1038/s41419-024-07077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
Cancer stem cells (CSCs) are a type of stem cell that possesses not only the intrinsic abilities of stem cells but also the properties of cancer cells. Therefore, CSCs are known to have self-renewal and outstanding proliferation capacity, along with the potential to differentiate into specific types of tumor cells. Cancers typically originate from CSCs, making them a significant target for tumor treatment. Among the related cascades of the CSCs, mammalian target of rapamycin (mTOR) pathway is regarded as one of the most important signaling pathways because of its association with significant upstream signaling: phosphatidylinositol 3‑kinase/protein kinase B (PI3K/AKT) pathway and mitogen‑activated protein kinase (MAPK) cascade, which influence various activities of stem cells, including CSCs. Recent studies have shown that the mTOR pathway not only affects generation of CSCs but also the maintenance of their pluripotency. Furthermore, the maintenance of pluripotency or differentiation into specific types of cancer cells depends on the regulation of the mTOR signal in CSCs. Consequently, the clinical potential and importance of mTOR in effective cancer therapy are increasing. In this review, we demonstrate the association between the mTOR pathway and cancer, including CSCs. Additionally, we discuss a new concept for anti-cancer drug development aimed at overcoming existing drawbacks, such as drug resistance, by targeting CSCs through mTOR inhibition.
Collapse
Affiliation(s)
- Boram Son
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeonjeong Kim
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
5
|
Yan W, Wang X, Wang W, Guo Q, Huang N, Chen H, Liang XJ, Han Y, Liu D, Zhang J. The p38/MAPK pathway as a therapeutic target to prevent therapeutic escape of breast cancer stem cells. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1867-1880. [PMID: 38951428 DOI: 10.1007/s11427-023-2585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/15/2024] [Indexed: 07/03/2024]
Abstract
Cancer stem cells (CSCs) play an important role in metastasis development, tumor recurrence, and treatment resistance, and are essential for the eradication of cancer. Currently, therapies fail to eradicate CSCs due to their therapeutic stress-induced cellular escape, which leads to enhanced aggressive behaviors compared with CSCs that have never been treated. However, the underlying mechanisms regulating the therapeutic escape remain unknown. To this end, we established a model to isolate the therapeutic escaped CSCs (TSCSCs) from breast CSCs and performed the transcription profile to reveal the mechanism. Mechanistically, we demonstrated that the behavior of therapeutic escape was regulated through the p38/MAPK signaling pathway, resulting in TSCSCs exhibiting enhanced motility and metastasis. Notably, blocking the p38/MAPK signaling pathway effectively reduced motility and metastasis ability both in vitro and in vivo, which were further supported by downregulated motility-related genes and epithelial-mesenchymal transition (EMT)-related proteins vimentin and N-cadherin. The obtained findings reveal the p38/MAPK pathway as a potential therapeutic target for TSCSCs and would provide profound implications for cancer therapy.
Collapse
Affiliation(s)
- Weixiao Yan
- State Key Laboratory of New Pharmaceutical Preparations and Excipients; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Xiaotong Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Wenjing Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Qi Guo
- State Key Laboratory of New Pharmaceutical Preparations and Excipients; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Na Huang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Hao Chen
- State Key Laboratory of New Pharmaceutical Preparations and Excipients; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yu Han
- State Key Laboratory of New Pharmaceutical Preparations and Excipients; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Dandan Liu
- State Key Laboratory of New Pharmaceutical Preparations and Excipients; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China.
| | - Jinchao Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education; College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China.
| |
Collapse
|
6
|
Wang J, Hou Q, Qu J, Huo X, Li H, Feng Y, Wang Q, Chang L, Xu C. Polyhedral magnetic nanoparticles induce apoptosis in gastric cancer stem cells and suppressing tumor growth through magnetic force generation. J Control Release 2024; 373:370-384. [PMID: 39032573 DOI: 10.1016/j.jconrel.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Gastric cancer is a prevalent malignant tumor worldwide, posing challenges due to its poor prognosis and limited treatment options. Cancer stem cells (CSCs) were demonstrated as a subset of cancer cells responsible for tumor initiation and progression, and their inherent resistance to conventional chemotherapy and radiotherapy critically contributes to tumor recurrence and metastasis. Promoting the eradication of cancer stem cells is crucial for enhancing the efficacy of cancer treatments. This study introduces a novel therapeutic strategy utilizing polyhedral magnetic nanoparticles (PMNPs) functionalized with CD44 antibodies and cell-penetrating peptides (CPPs) to improve uptake by gastric cancer stem cells (MCSCs). PMNPs, synthesized via thermal decomposition, exhibited a diameter of 90 nm ± 9 nm and a saturation magnetization of 79.9 emu/g. Functionalization enhanced their uptake capabilities. Under a rotating magnetic field (RMF) of 15 Hz, PMNPs disrupted cellular structure, leading to apoptosis and ferroptosis in MCSCs. The in vitro studies showed significant reduction in MCSCs viability, while in vivo studies demonstrated tumor growth suppression with minimal side effects and high biocompatibility. This work presents a novel strategy for designing magnetic nanoparticles to mechanically destroy cancer stem cells, offering a more efficient and safety treatment option for gastric cancer.
Collapse
Affiliation(s)
- Jianhua Wang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, 710068 Xi'an, China; Second Department of General Surgery, Shaanxi Provincial People's Hospital, 710068 Xi'an, China
| | - Qiang Hou
- Department of Graduate School, Yan'an University, 716000 Yan'an, China
| | - Jie Qu
- Department of Graduate School, Yan'an University, 716000 Yan'an, China
| | - Xueping Huo
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, 710068 Xi'an, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, 710068 Xi'an, China
| | - Huiting Li
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, 710068 Xi'an, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, 710068 Xi'an, China
| | - Yangmeng Feng
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, 710068 Xi'an, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, 710068 Xi'an, China
| | - Qiyu Wang
- Department of Graduate School, Yan'an University, 716000 Yan'an, China
| | - Le Chang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, 710068 Xi'an, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, 710068 Xi'an, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, 710049 Xi'an, China.
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, 710068 Xi'an, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, 710068 Xi'an, China.
| |
Collapse
|
7
|
Cai L, Liu Y, Li Y, Liu B, Cao Y, Yang W, Wang B, Sun T. TRIM37 interacts with EZH2 to epigenetically suppress PTCH1 and regulate stemness in glioma stem cells through sonic hedgehog pathway. J Neurooncol 2024; 169:269-279. [PMID: 38884661 DOI: 10.1007/s11060-024-04726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/25/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Glioma stem cells (GSCs), which are known for their therapy resistance, play a substantial role in treatment inefficacy for glioblastoma multiforme (GBM). TRIM37, a member of the tripartite motif (TRIM) protein family initially linked to a rare growth disorder, has been recognized for its oncogenic role. However, the mechanism by which TRIM37 regulates tumor growth in glioma and GSCs is unclear. METHODS For the in vitro experiments, gene expression was measured by western blotting, RT-qPCR, and immunofluorescence. Cell viability was detected by CCK-8, and cell apoptosis was detected by flow cytometry. The interaction between Enhancer of Zeste Homolog 2 (EZH2) and TRIM37 was verified by co-immunoprecipitation (Co-IP). The interaction between EZH2 and the PTCH1 promoter was verified using dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP). For the in vivo experiments, an orthotopically implanted glioma mouse model was used to validate tumor growth. RESULTS The expression of TRIM37 is higher in GSCs compared with matched non-GSCs. TRIM37 knockdown promotes apoptosis, decreased stemness in GSCs, and reduces tumor growth in GSCs xenografts of nude mice. TRIM37 and EZH2 co-localize in the nucleus and interact with each other. TRIM37 knockdown or EZH2 inhibition downregulates the protein expressions associated with the Sonic Hedgehog (SHH) pathway. EZH2 epigenetically downregulates PTCH1 to activate SHH pathway in GSCs. CONCLUSIONS TRIM37 maintains the cell growth and stemness in GSCs through the interaction with EZH2. EZH2 activates SHH stem cell signaling pathway by downregulating the expression of SHH pathway suppressor PTCH1. Our findings suggest that TRIM37 may be a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Lize Cai
- Neurosurgery and Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yongsheng Liu
- Neurosurgery and Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanyan Li
- Neurosurgery and Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Liu
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - YuFei Cao
- Neurosurgery and Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China.
| | - Bo Wang
- Department of Oncology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Ting Sun
- Neurosurgery and Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
8
|
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
9
|
Wang WD, Guo YY, Yang ZL, Su GL, Sun ZJ. Sniping Cancer Stem Cells with Nanomaterials. ACS NANO 2023; 17:23262-23298. [PMID: 38010076 DOI: 10.1021/acsnano.3c07828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cancer stem cells (CSCs) drive tumor initiation, progression, and therapeutic resistance due to their self-renewal and differentiation capabilities. Despite encouraging progress in cancer treatment, conventional approaches often fail to eliminate CSCs, necessitating the development of precise targeted strategies. Recent advances in materials science and nanotechnology have enabled promising CSC-targeted approaches, harnessing the power of tailoring nanomaterials in diverse therapeutic applications. This review provides an update on the current landscape of nanobased precision targeting approaches against CSCs. We elucidate the nuanced application of organic, inorganic, and bioinspired nanomaterials across a spectrum of therapeutic paradigms, encompassing targeted therapy, immunotherapy, and multimodal synergistic therapies. By examining the accomplishments and challenges in this potential field, we aim to inform future efforts to advance nanomaterial-based therapies toward more effective "sniping" of CSCs and tumor clearance.
Collapse
Affiliation(s)
- Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Yan-Yu Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhong-Lu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
10
|
Huang X, Li S, Ding R, Li Y, Li C, Gu R. Antitumor effects of polysaccharides from medicinal lower plants: A review. Int J Biol Macromol 2023; 252:126313. [PMID: 37579902 DOI: 10.1016/j.ijbiomac.2023.126313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Cancer is one of the leading causes of death worldwide, yet the drugs currently approved for cancer treatment are associated with significant side effects, making it urgent to develop alternative drugs with low side effects. Polysaccharides are natural polymers with ketone or aldehyde groups, which are widely found in plants and have various biological activities such as immunomodulation, antitumor and hypolipidemic. The lower plants have attracted much attention for their outstanding anticancer effects, and many studies have shown that medicinal lower plant polysaccharides (MLPPs) have antitumor activity against various cancers and are promising alternatives with potential development in the food and pharmaceutical fields. Therefore, this review describes the structure and mechanism of action of MLPPs with antitumor activity. In addition, the application of MLPPs in cancer treatment is discussed, and the future development of MLPPs is explored.
Collapse
Affiliation(s)
- Xi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Canlin Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
11
|
León-Fuentes IM, Salgado-Gil MG, Novoa MS, Retamal MA. Connexins in Cancer, the Possible Role of Connexin46 as a Cancer Stem Cell-Determining Protein. Biomolecules 2023; 13:1460. [PMID: 37892142 PMCID: PMC10604234 DOI: 10.3390/biom13101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is a widespread and incurable disease caused by genetic mutations, leading to uncontrolled cell proliferation and metastasis. Connexins (Cx) are transmembrane proteins that facilitate intercellular communication via hemichannels and gap junction channels. Among them, Cx46 is found mostly in the eye lens. However, in pathological conditions, Cx46 has been observed in various types of cancers, such as glioblastoma, melanoma, and breast cancer. It has been demonstrated that elevated Cx46 levels in breast cancer contribute to cellular resistance to hypoxia, and it is an enhancer of cancer aggressiveness supporting a pro-tumoral role. Accordingly, Cx46 is associated with an increase in cancer stem cell phenotype. These cells display radio- and chemoresistance, high proliferative abilities, self-renewal, and differentiation capacities. This review aims to consolidate the knowledge of the relationship between Cx46, its role in forming hemichannels and gap junctions, and its connection with cancer and cancer stem cells.
Collapse
Affiliation(s)
| | | | | | - Mauricio A. Retamal
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, República de Honduras 12740, Las Condes, Santiago 7610496, Chile; (I.M.L.-F.); (M.G.S.-G.); (M.S.N.)
| |
Collapse
|
12
|
Shamsabadipour A, Pourmadadi M, Davodabadi F, Rahdar A, Romanholo Ferreira LF. Applying thermodynamics as an applicable approach to cancer diagnosis, evaluation, and therapy: A review. J Drug Deliv Sci Technol 2023; 86:104681. [DOI: 10.1016/j.jddst.2023.104681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Lv S, Liu Y, Xie C, Xue C, Du S, Yao J. Emerging role of interactions between tumor angiogenesis and cancer stem cells. J Control Release 2023; 360:468-481. [PMID: 37391031 DOI: 10.1016/j.jconrel.2023.06.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Tumor angiogenesis and cancer stem cells (CSCs) are two major hallmarks of solid tumors. They have long received attention for their critical roles in tumor progression, metastasis and recurrence. Meanwhile, plenty of evidence indicates the close association between CSCs and tumor vasculature. CSCs are proven to promote tumor angiogenesis, and the highly vascularized tumor microenvironment further maintains CSCs growth in return, thereby forming a hard-breaking vicious circle to promote tumor development. Hence, though monotherapy targeting tumor vasculature or CSCs has been extensively studied over the past decades, the poor prognosis has been limiting the clinical application. This review summarizes the crosstalk between tumor vasculature and CSCs with emphasis on small-molecule compounds and the associated biological signaling pathways. We also highlight the importance of linking tumor vessels to CSCs to disrupt the CSCs-angiogenesis vicious circle. More precise treatment regimens targeting tumor vasculature and CSCs are expected to benefit future tumor treatment development.
Collapse
Affiliation(s)
- Shuai Lv
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yufei Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Changheng Xie
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Chenyang Xue
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Shi Du
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
14
|
Fan M, Shi Y, Zhao J, Li L. Cancer stem cell fate determination: mito-nuclear communication. Cell Commun Signal 2023; 21:159. [PMID: 37370081 DOI: 10.1186/s12964-023-01160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/06/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer stem cells (CSCs) are considered to be responsible for tumor recurrence and metastasis. Therefore, clarification of the mechanisms involved in CSC stemness maintenance and cell fate determination would provide a new strategy for cancer therapy. Unregulated cellular energetics has been accepted as one of the hallmarks of cancer cells, but recent studies have revealed that mitochondrial metabolism can also actively determine CSC fate by affecting nuclear stemness gene expression. Herein, from the perspective of mito-nuclear communication, we review recent progress on the influence of mitochondria on CSC potential from four aspects: metabolism, dynamics, mitochondrial homeostasis, and reactive oxygen species (ROS). Video Abstract.
Collapse
Affiliation(s)
- Mengchen Fan
- School of Basic Medical Sciences, Medical College of Yan'an University, Yanan, 716000, China
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying Shi
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Jumei Zhao
- School of Basic Medical Sciences, Medical College of Yan'an University, Yanan, 716000, China.
| | - Ling Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
15
|
Wang X, Liu S, Zhang W, Peng H, Zhang M, Li Y, Guo Q, Wang W, Huang N, Liu L, Liu D. Silicon nanowire array overcomes chemotherapeutic resistance by inducing the differentiation of breast cancer stem cells. J Biomed Mater Res B Appl Biomater 2023. [PMID: 36929288 DOI: 10.1002/jbm.b.35249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/18/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
Currently, traditional cancer treatment strategies are greatly challenged by the existence of cancer stem cells (CSCs), which are root cause of chemotherapy resistance. Differentiation therapy presents a novel therapeutic strategy for CSC-targeted therapy. However, there are very few studies on the induction of CSCs differentiation so far. Silicon nanowire array (SiNWA) with many unique properties is considered to be an excellent material for various applications ranging from biotechnology to biomedical applications. In this study, we report the SiNWA differentiates MCF-7-derived breast CSCs (BCSCs) into non-CSCs by modulating the morphology of cells. In vitro, the differentiated BCSCs lose the stemness properties and thus become sensitive to chemotherapeutic drugs, eventually leading to the death of BCSCs. Therefore, this work suggests a potential approach for overcoming chemotherapeutic resistance.
Collapse
Affiliation(s)
- Xiaotong Wang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, People's Republic of China
| | - Sisi Liu
- Cheng'an County Hospital of Traditional Chinese Medicine, Handan, People's Republic of China
| | - Wei Zhang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, People's Republic of China
| | - Haotong Peng
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, People's Republic of China
| | - Miao Zhang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, People's Republic of China
| | - Yaping Li
- College of Public Health, Hebei University, Baoding, People's Republic of China
| | - Qi Guo
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, People's Republic of China
| | - Wenjing Wang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, People's Republic of China
| | - Na Huang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, People's Republic of China
| | - LiYan Liu
- Medical Comprehensive Experimental Centrer, Hebei University, Baoding, People's Republic of China
| | - Dandan Liu
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, People's Republic of China
| |
Collapse
|
16
|
Fan L, Wang X, Cheng C, Wang S, Li X, Cui J, Zhang B, Shi L. Inhibitory Effect and Mechanism of Ursolic Acid on Cisplatin-Induced Resistance and Stemness in Human Lung Cancer A549 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:1307323. [PMID: 37089712 PMCID: PMC10121351 DOI: 10.1155/2023/1307323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/21/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023]
Abstract
The survival rate of lung cancer patients remains low largely due to chemotherapy resistance during treatment, and cancer stem cells (CSCs) may hold the key to targeting this resistance. Cisplatin is a chemotherapy drug commonly used in cancer treatment, yet the mechanisms of intrinsic cisplatin resistance have not yet been determined because lung CSCs are hard to identify. In this paper, we proposed a mechanism relating to the function of ursolic acid (UA), a new drug, in reversing the cisplatin resistance of lung cancer cells regulated by CSCs. Human lung cancer cell line A549 was selected as the model cell and treated to become a cisplatin-resistant lung cancer cell line (A549-CisR), which was less sensitive to cisplatin and showed an enhanced capability of tumor sphere formation. Furthermore, in the A549-CisR cell line expression, levels of pluripotent stem cell transcription factors Oct-4, Sox-2, and c-Myc were increased, and activation of the Jak2/Stat3 signaling pathway was promoted. When UA was applied to the cisplatin-resistant cells, levels of the pluripotent stem cell transcription factors were restrained by the inhibition of the Jak2/Stat3 signaling pathway, which reduced the enrichment of tumor stem cells, and in turn, reversed cisplatin resistance in lung cancer cells. Hence, as a potential antitumor drug, UA may be able to inhibit the enrichment of the lung CSC population by inhibiting the activation of the Jak2-Stat3 pathway and preventing the resistance of lung cancer cells to cisplatin.
Collapse
Affiliation(s)
- Luxin Fan
- Department of Respiratory, Weifang People's Hospital, Weifang 261041, China
| | - Xiaodong Wang
- Microbiological Laboratory, Weifang Inspection and Testing Center, Weifang 261100, China
| | - Congcong Cheng
- Department of Oncology, Yidu Central Hospital of Weifang, Qingzhou 262500, China
| | - Shuxiao Wang
- Intravenous Drug Dispensing Center, Second Hospital of Shandong University, Jinan 250033, China
| | - Xuesong Li
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Jiayu Cui
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Baogang Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Lihong Shi
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
17
|
Demeule M, Charfi C, Currie JC, Zgheib A, Danalache BA, Béliveau R, Marsolais C, Annabi B. The TH1902 Docetaxel Peptide-Drug Conjugate Inhibits Xenografts Growth of Human SORT1-Positive Ovarian and Triple-Negative Breast Cancer Stem-like Cells. Pharmaceutics 2022; 14:pharmaceutics14091910. [PMID: 36145658 PMCID: PMC9503230 DOI: 10.3390/pharmaceutics14091910] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Breast and ovarian cancer stem cells (CSC) can contribute to the invasive and chemoresistance phenotype of tumors. TH1902, a newly developed sortilin (SORT1)-targeted peptide-docetaxel conjugate is currently in phase-1 clinical trial. Whether TH1902 impacts the chemoresistance phenotype of human triple-negative breast CSC (hTNBCSC) and ovarian CSC (hOvCSC) is unknown. Methods and Results: Immunophenotyping of hTNBCSC and hOvCSC was performed by flow cytometry and confirmed the expression of SORT1, and of CSC markers CD133, NANOG, and SOX2. Western blotting demonstrated the expression of the drug efflux pumps from the P-gp family members, ABCB1 and ABCB5. The cellular uptake of the fluorescent Alexa488-peptide from TH1902 was inhibited upon siRNA-mediated repression of SORT1 or upon competition with SORT1 ligands. In contrast to docetaxel, TH1902 inhibited in vitro migration, induced cell apoptosis and lead to G2/M cell cycle arrest of the hTNBCSC. These events were unaffected by the presence of the P-gp inhibitors cyclosporine A or PSC-833. In vivo, using immunosuppressed nude mice xenografts, TH1902 significantly inhibited the growth of hTNBCSC and hOvCSC xenografts (~80% vs. ~35% for docetaxel) when administered weekly as intravenous bolus for three cycles at 15 mg/kg, a dose equivalent to the maximal tolerated dose of docetaxel. Therapeutic efficacy was further observed when carboplatin was combined to TH1902. Conclusions: Overall, TH1902 exerts a superior anticancer activity than the unconjugated docetaxel, in part, by circumventing the CSC drug resistance phenotype that could potentially reduce cancer recurrence attributable to CSC.
Collapse
Affiliation(s)
| | - Cyndia Charfi
- Theratechnologies Inc., Montréal, QC H3A 1T8, Canada
| | | | - Alain Zgheib
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| | - Bogdan Alexandru Danalache
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| | - Richard Béliveau
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| | | | - Borhane Annabi
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Correspondence: ; Tel.: +1-(514)-987-3000 (ext. 7610)
| |
Collapse
|