1
|
Maleki-Ghaleh H, Kamiński B, Moradpur-Tari E, Raza S, Khanmohammadi M, Zbonikowski R, Shakeri MS, Siadati MH, Akbari-Fakhrabadi A, Paczesny J. Visible Light-Sensitive Sustainable Quantum Dot Crystals of Co/Mg Doped Natural Hydroxyapatite Possessing Antimicrobial Activity and Biocompatibility. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405708. [PMID: 39449217 DOI: 10.1002/smll.202405708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Cutting-edge research in advanced materials is increasingly turning toward the development of novel multifunctional nanomaterials for use in high-tech applications. This research uses the solid-state method as a solvent-free technique to create multifunctional quantum dot (QD) hydroxyapatite (HA) crystals from bovine bone waste. By incorporating cobalt (Co) and magnesium (Mg) into the HA structure, the crystallinity of the hexagonal HA nanoparticles (99.7%), showing QD crystals is enhanced. Oxygen vacancies on the surfaces of the HA nanoparticles contributed to their bandgap falling within the visible light range. In addition, the dopants substituted calcium in the HA crystal structure and generated a divalent oxidation state, shifting the bandgap of natural HA toward red wavelengths (3.26 to 1.94 eV). Moreover, the incorporation of Co led to magnetization within the HA structure through spin polarization. Additionally, the doped QD crystals of HA nanoparticles showed significant antimicrobial activity against Escherichia coli, Staphylococcus aureus, and bacteriophages MS2, particularly under visible light exposure. In short, the Co/Mg co-doped HA nanoparticles exhibited ferromagnetic properties, sensitivity to visible light, biocompatibility, and considerable antimicrobial effects, establishing their potential as sustainable multifunctional materials for biomedical applications, especially in anti-infection treatments.
Collapse
Affiliation(s)
- Hossein Maleki-Ghaleh
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
| | - Bartosz Kamiński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
| | - Ehsan Moradpur-Tari
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Sada Raza
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
| | - Mehdi Khanmohammadi
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw, 02-507, Poland
| | - Rafał Zbonikowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
| | | | - M Hossein Siadati
- Materials Science and Engineering Faculty, K. N. Toosi University of Technology, Tehran, 15418, Iran
| | - Ali Akbari-Fakhrabadi
- Advanced Materials Laboratory, Department of Mechanical Engineering, University of Chile, Santiago, 8370456, Chile
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
| |
Collapse
|
2
|
Huang Y, Guo W, Wang X, Chang J, Lu B. An acidity-triggered aggregation nanoplatform based on degradable mesoporous organosilica nanoparticles for precise drug delivery and phototherapy of focal bacterial infection. Dalton Trans 2024. [PMID: 39431576 DOI: 10.1039/d4dt02111h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
It is crucial to precisely strike the bacterially infected area and avoid damaging healthy tissue in bacterial infection treatment. Herein, we report an acidity-triggered aggregation antibacterial nanoplatform based on biodegradable mesoporous organic silica nanoparticles (MON NPs). The surface of MON NPs modified with polydopamine (PDA) encapsulated ciprofloxacin (CIP) and methylene blue (MB) and was then further grafted with glycol chitosan to obtain MB/CIP@MON-PDA-GCS NPs (MCMPG NPs). In the bacterial infection environment with acidic characteristics, glycol chitosan (GCS) becomes positively charged. Consequently, the positively charged acidity-triggered GCS enables MCMPG NPs to accumulate on the negatively charged bacterial surfaces in the infected area and not in healthy tissue. The targeted method allows for the precise release of CIP and MB, ensuring the spatial accuracy of photodynamic therapy (PDT) and photothermal therapy (PTT) for effective bacteria-specific treatment.
Collapse
Affiliation(s)
- Yunhan Huang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China.
| | - Wei Guo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China.
| | - Xinyu Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China.
| | - Jingrui Chang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China.
| | - Bo Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China.
| |
Collapse
|
3
|
Solanki R, Makwana N, Kumar R, Joshi M, Patel A, Bhatia D, Sahoo DK. Nanomedicines as a cutting-edge solution to combat antimicrobial resistance. RSC Adv 2024; 14:33568-33586. [PMID: 39439838 PMCID: PMC11495475 DOI: 10.1039/d4ra06117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a critical threat to global public health, necessitating the development of novel strategies. AMR occurs when bacteria, viruses, fungi, and parasites evolve to resist antimicrobial drugs, making infections difficult to treat and increasing the risk of disease spread, severe illness, and death. Over 70% of infection-causing microorganisms are estimated to be resistant to one or several antimicrobial drugs. AMR mechanisms include efflux pumps, target modifications (e.g., mutations in penicillin-binding proteins (PBPs), ribosomal subunits, or DNA gyrase), drug hydrolysis by enzymes (e.g., β-lactamase), and membrane alterations that reduce the antibiotic's binding affinity and entry. Microbes also resist antimicrobials through peptidoglycan precursor modification, ribosomal subunit methylation, and alterations in metabolic enzymes. Rapid development of new strategies is essential to curb the spread of AMR and microbial infections. Nanomedicines, with their small size and unique physicochemical properties, offer a promising solution by overcoming drug resistance mechanisms such as reduced drug uptake, increased efflux, biofilm formation, and intracellular bacterial persistence. They enhance the therapeutic efficacy of antimicrobial agents, reduce toxicity, and tackle microbial resistance effectively. Various nanomaterials, including polymeric-based, lipid-based, metal nanoparticles, carbohydrate-derived, nucleic acid-based, and hydrogels, provide efficient solutions for AMR. This review addresses the epidemiology of microbial resistance, outlines key resistance mechanisms, and explores how nanomedicines overcome these barriers. In conclusion, nanomaterials represent a versatile and powerful approach to combating the current antimicrobial crisis.
Collapse
Affiliation(s)
- Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| | - Nilesh Makwana
- School of Life Sciences, Jawaharlal Nehru University New Delhi India
| | - Rahul Kumar
- Dr B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences New Delhi India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC) Gandhinagar Gujarat India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University Patan 384265 Gujarat India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University Ames IA USA
| |
Collapse
|
4
|
Chen N, Zhang L, Wang M, Liu L, Huang C, Zhan L. White light-driven enhanced cerium-doped carbon dots activity to combat multidrug-resistant bacterial infection. Colloids Surf B Biointerfaces 2024; 242:114086. [PMID: 39038410 DOI: 10.1016/j.colsurfb.2024.114086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Infections caused by multidrug-resistant (MDR) bacteria are increasing and becoming an urgent global health crisis. The discovery and development of novel antibacterial agents to combat MDR are highly desirable. Here, we report the fabrication of cerium-doped carbon dots (CeCDs) with a simple hydrothermal method, which exhibit intrinsic broad efficacy against MDR bacteria including clinical isolates while maintaining low cytotoxicity and hemolytic effects. Importantly, the antibacterial activity of CeCDs is dramatically improved owing to the generation of reactive oxygen species (ROS) upon white light irradiation. Comprehensive analyses revealed that the CeCDs can penetrate the bacterial wall, disrupt the cell membrane, and prevent the biofilm formation, possibly hindering the bacterial resistance development. And the interaction of CeCDs with lipopolysaccharide (LPS) may contribute to the higher activity against Gram-negative bacteria strains. The treatment of CeCDs in a murine skin infection model can significantly reduce the number of bacteria on infected sites and accelerate wound healing by irradiation with light. Overall, CeCDs show great promise as low-cost and efficient antibacterial agents for chronic wounds and may be served as a powerful weapon to fight against the growing threat of MDR bacterial infection.
Collapse
Affiliation(s)
- Na Chen
- Key Laboratory of Biomedical Analytics, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lijun Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Mengzhen Wang
- Key Laboratory of Biomedical Analytics, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lin Liu
- Key Laboratory of Biomedical Analytics, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chengzhi Huang
- Key Laboratory of Biomedical Analytics, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Lei Zhan
- Key Laboratory of Biomedical Analytics, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Pourrafsanjani MH, Taghavi R, Hasanzadeh A, Rostamnia S. Green stabilization of silver nanoparticles over the surface of biocompatible Fe 3O 4@CMC for bactericidal applications. Int J Biol Macromol 2024; 277:134227. [PMID: 39074708 DOI: 10.1016/j.ijbiomac.2024.134227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
The emergence of antimicrobial resistance in bacteria, especially in agents associated with urinary tract infections (UTIs), has initiated an exciting effort to develop biocompatible nanoparticles to confront their threat. Designing simple, cheap, biocompatible, and efficient nanomaterials as bactericidal agents seems to be a judicious response to this problem. Here, a solvothermal method was hired for the one-pot preparation of the cellulose gum (carboxymethyl cellulose, CMC) magnetic composite to prepare a cost-effective, efficient, and biocompatible support for the plant-based stabilization of the silver NPs. The green stabilization of the Ag NPs is performed using Euphorbia plant extract with high efficiency. Various characterization methods, including FT-IR, XRD, SEM, EDS, TEM, and VSM were used to study the composition and properties of Fe3O4@CMC/AgNPs. The composite shows well integrity and monodispersity with a mean diameter of <300 nm, indicating its potential for bio-related application. The CMC functionalities of the proposed material facilitated the stabilization of the Ag NPs, resulting in their monodispersity and enhanced performance. The manufactured composite was used as an antibacterial agent for the removal of UTIs agents, collected from 200 hospitalized patients with acute coronary syndrome, which showed promising results. This study showed that the concentration of the Ag NPs has a direct relationship with the antibacterial properties of the composite.
Collapse
Affiliation(s)
- Mojgan Hajahmadi Pourrafsanjani
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 57157-89400, Iran
| | - Reza Taghavi
- Organic and Nano Group, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Amir Hasanzadeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 57157-89400, Iran.
| | - Sadegh Rostamnia
- Organic and Nano Group, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
6
|
Dai D, Li D, Zhang C. Unraveling Nanomaterials in Biomimetic Mineralization of Dental Hard Tissue: Focusing on Advantages, Mechanisms, and Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405763. [PMID: 39206945 PMCID: PMC11516058 DOI: 10.1002/advs.202405763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The demineralization of dental hard tissue imposes considerable health and economic burdens worldwide, but an optimal method that can repair both the chemical composition and complex structures has not been developed. The continuous development of nanotechnology has created new opportunities for the regeneration and repair of dental hard tissue. Increasingly studies have reported that nanomaterials (NMs) can induce and regulate the biomimetic mineralization of dental hard tissue, but few studies have examined how they are involved in the different stages, let alone the relevant mechanisms of action. Besides their nanoscale dimensions and excellent designability, NMs play a corresponding role in the function of the raw materials for mineralization, mineralized microenvironment, mineralization guidance, and the function of mineralized products. This review comprehensively summarizes the advantages of NMs and examines the specific mineralization mechanisms. Design strategies to promote regeneration and repair are summarized according to the application purpose of NMs in the oral cavity, and limitations and development directions in dental hard tissue remineralization are proposed. This review can provide a theoretical basis to understand the interaction between NMs and the remineralization of dental hard tissue, thereby optimizing design strategy, rational development, and clinical application of NMs in the field of remineralization.
Collapse
Affiliation(s)
- Danni Dai
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Dan Li
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Chao Zhang
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| |
Collapse
|
7
|
Zhang H, Lu Y, Huang L, Liu P, Ni J, Yang T, Li Y, Zhong Y, He X, Xia X, Zhou J. Scalable and Versatile Metal Ion Solidificated Alginate Hydrogel for Skin Wound Infection Therapy. Adv Healthc Mater 2024; 13:e2303688. [PMID: 38481054 DOI: 10.1002/adhm.202303688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/25/2024] [Indexed: 03/21/2024]
Abstract
Bacterial infections in wounds continue to be a major challenge in clinical settings worldwide and represent a significant threat to human health. This work proposes novel expandable and versatile methods for solidifying sodium alginate (SA) with metal ions (such as Fe3+, Co2+, Ni2+, Cu2+, and Zn2+) to create Metal-Alginate (M-Alg) hydrogel with adjustable morphology, composition, and microstructure. It conforms to the wound site, protects against second infection, reduces inflammation, and promotes the healing of infected wounds. Among these hydrogels, Cu-Alginate (Cu-Alg) shows excellent sterilization effect and good efficacy against both gram-positive and gram-negative bacteria, including multidrug-resistant (MDR) strains such as Methicillin-resistant Staphylococcus aureus (MRSA) and Carbapenem-resistant Klebsiella pneumoniae (CRKP) due to its dual antibacterial mechanisms: contact-killing and reactive oxygen species (ROS) burst. Importantly, it exhibits low cytotoxicity and biodegradability. This simple and cost-effective gel-based system has the potential to introduce an innovative approach to the management of wound infection and offers promising new perspectives for the advancement of wound care practice.
Collapse
Affiliation(s)
- Haomiao Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ye Lu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Lei Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ping Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jun Ni
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Tianqi Yang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yihong Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yu Zhong
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinping He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinhui Xia
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| |
Collapse
|
8
|
Cui X, Liu F, Cai S, Wang T, Zheng S, Zou X, Wang L, He S, Li Y, Zhang Z. Charge adaptive phytochemical-based nanoparticles for eradication of methicillin-resistant staphylococcus aureus biofilms. Asian J Pharm Sci 2024; 19:100923. [PMID: 38948398 PMCID: PMC11214180 DOI: 10.1016/j.ajps.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/07/2024] [Accepted: 03/06/2024] [Indexed: 07/02/2024] Open
Abstract
The intrinsic resistance of MRSA coupled with biofilm antibiotic tolerance challenges the antibiotic treatment of MRSA biofilm infections. Phytochemical-based nanoplatform is a promising emerging approach for treatment of biofilm infection. However, their therapeutic efficacy was restricted by the low drug loading capacity and lack of selectivity. Herein, we constructed a surface charge adaptive phytochemical-based nanoparticle with high isoliquiritigenin (ISL) loading content for effective treatment of MRSA biofilm. A dimeric ISL prodrug (ISL-G2) bearing a lipase responsive ester bond was synthesized, and then encapsulated into the amphiphilic quaternized oligochitosan. The obtained ISL-G2 loaded NPs possessed positively charged surface, which allowed cis-aconityl-d-tyrosine (CA-Tyr) binding via electrostatic interaction to obtain ISL-G2@TMDCOS-Tyr NPs. The NPs maintained their negatively charged surface, thus prolonging the blood circulation time. In response to low pH in the biofilms, the fast removal of CA-Tyr led to a shift in their surface charge from negative to positive, which enhanced the accumulation and penetration of NPs in the biofilms. Sequentially, the pH-triggered release of d-tyrosine dispersed the biofilm and lipase-triggered released of ISL effectively kill biofilm MRSA. An in vivo study was performed on a MRSA biofilm infected wound model. This phytochemical-based system led to ∼2 log CFU (>99 %) reduction of biofilm MRSA as compared to untreated wound (P < 0.001) with negligible biotoxicity in mice. This phytochemical dimer nanoplatform shows great potential for long-term treatment of resistant bacterial infections.
Collapse
Affiliation(s)
- Xilong Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Fanhui Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Shuang Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Tingting Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Sidi Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Xinshu Zou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Linlin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Siqi He
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Zhiyun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| |
Collapse
|
9
|
Wei F, Zheng H, Gao C, Tian J, Gou J, Hamouda HI, Xue C. In Situ Preparation of Star-Shaped Protein-"Smart" Polymer Conjugates with pH and Thermo-Dual Responsibility for Bacterial Separation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38817042 DOI: 10.1021/acs.jafc.3c09129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
To achieve effective separation and enrichment of bacteria, a novel synthetic scheme was developed to synthesize star-style boronate-functionalized copolymers with excellent hydrophilicity and temperature and pH responsiveness. A hydrophilic copolymer brush was synthesized by combining surface-initiated atom-transfer radical polymerization with amide reaction using bovine serum albumin as the core. The copolymer brush was further modified by introducing and immobilizing fluorophenylboronic acids through an amide reaction, resulting in the formation of boronate affinity material BSA@poly(NIPAm-co-AGE)@DFFPBA. The morphology and organic content of BSA@poly(NIPAm-co-AGE)@DFFPBA were systematically characterized. The BSA-derived composites demonstrated a strong binding capacity to both Gram-positive and Gram-negative bacteria. The binding capabilities of the affinity composite to Staphylococcus aureus and Salmonella spp. were 195.8 × 1010 CFU/g and 79.2 × 1010 CFU/g, respectively, which indicates that the novel composite exhibits a high binding capability to bacteria and shows a particularly more significant binding capacity toward Gram-positive bacteria. The bacterial binding of BSA@poly(NIPAm-co-AGE)@DFFPBA can be effectively altered by adjusting the pH and temperature. This study demonstrated that the star-shaped affinity composite had the potential to serve as an affinity material for the rapid separation and enrichment of bacteria in complex samples.
Collapse
Affiliation(s)
- Fayi Wei
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| | - Hongwei Zheng
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| | - Chao Gao
- Technology Center of Qingdao Customs, Qingdao 266003, China
| | - Jiaojiao Tian
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
| | - Jinpeng Gou
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
| | - Hamed I Hamouda
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
10
|
Zhang J, Liu M, Guo H, Gao S, Hu Y, Zeng G, Yang D. Nanotechnology-driven strategies to enhance the treatment of drug-resistant bacterial infections. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1968. [PMID: 38772565 DOI: 10.1002/wnan.1968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024]
Abstract
The misuse of antibiotics has led to increased bacterial resistance, posing a global public health crisis and seriously endangering lives. Currently, antibiotic therapy remains the most common approach for treating bacterial infections, but its effectiveness against multidrug-resistant bacteria is diminishing due to the slow development of new antibiotics and the increase of bacterial drug resistance. Consequently, developing new a\ntimicrobial strategies and improving antibiotic efficacy to combat bacterial infection has become an urgent priority. The emergence of nanotechnology has revolutionized the traditional antibiotic treatment, presenting new opportunities for refractory bacterial infection. Here we comprehensively review the research progress in nanotechnology-based antimicrobial drug delivery and highlight diverse platforms designed to target different bacterial resistance mechanisms. We also outline the use of nanotechnology in combining antibiotic therapy with other therapeutic modalities to enhance the therapeutic effectiveness of drug-resistant bacterial infections. These innovative therapeutic strategies have the potential to enhance bacterial susceptibility and overcome bacterial resistance. Finally, the challenges and prospects for the application of nanomaterial-based antimicrobial strategies in combating bacterial resistance are discussed. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Ming Liu
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Haiyang Guo
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Shuwen Gao
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Yanling Hu
- College of Life and Health, Nanjing Polytechnic Institute, Nanjing, China
| | - Guisheng Zeng
- Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, China
| |
Collapse
|
11
|
Li Y, Wang T, Zhang J, Sukhorukov GB, Zhang L, Xue Y, Shang L. Smart Bactericidal Capsules Based on Cationic Luminescent Nanoclusters for Controllable Treatment of Drug-Resistant Bacterial Infection. Adv Healthc Mater 2024; 13:e2303686. [PMID: 38262003 DOI: 10.1002/adhm.202303686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Effective treatment of drug-resistant bacteria infected wound has been a longstanding challenge for healthcare systems. In particular, the development of novel strategies for controllable delivery and smart release of antimicrobial agents is greatly demanded. Herein, the design of biodegradable microcapsules carrying bactericidal gold nanoclusters (AuNCs) as an attractive platform for the effective treatment of drug-resistant bacteria infective wounds is reported. AuNC capsules are fabricated via the well-controlled layer-by-layer strategy, which possess intrinsic near-infrared fluorescence and good biocompatibility. Importantly, these AuNC capsules exhibit strong, specific antibacterial activity toward both S. aureus and methicillin-resistant S. aureus (MRSA). Further mechanistic studies by fluorescence confocal imaging and inductively coupled plasma mass spectrometry reveal that these AuNC capsules will be degraded in the S. aureus environment rather than E. coli, which then controllably release the loaded cationic AuNCs to exert antibacterial effect. Consequently, these AuNC capsules show remarkable therapeutic effect for the MRSA infected wound on a mouse model, and intrinsic fluorescence property of AuNC capsules enables in situ visualization of wound dressings. This study suggests the great potential of microcapsule-based platform as smart carriers of bactericidal agents for the effective treatment of drug-resistant bacterial infection as well as other therapeutic purposes.
Collapse
Affiliation(s)
- Yixiao Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an, 710072, P. R. China
| | - Tianyi Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an, 710072, P. R. China
| | - Jiaxin Zhang
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Skolkovo Institute of Science and Technology, Bolshoi pr.30, Moscow, 143025, Russia
| | - Lianbing Zhang
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an, 710072, P. R. China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an, 710072, P. R. China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an, 710072, P. R. China
| |
Collapse
|
12
|
Bai X, Zhang X, Xiao J, Lin X, Lin R, Zhang R, Deng X, Zhang M, Wei W, Lan B, Weng S, Chen M. Endowing Polyetheretherketone with Anti-Infection and Immunomodulatory Properties through Guanidination Carbon Dots Modification to Promote Osseointegration in Diabetes with MRSA Infection. Adv Healthc Mater 2024; 13:e2302873. [PMID: 38041688 DOI: 10.1002/adhm.202302873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/17/2023] [Indexed: 12/03/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection and compromised immunity are the severe complications associated with implantation surgery in diabetes mellitus. Enhancing the antibacterial and immunomodulatory properties of implants represents an effective approach to improve the osseointegration of implant in diabetes mellitus. Herein, guanidination carbon dots (GCDs) with antibacterial and immunoregulatory functions are synthesized. The GCDs demonstrate killing effect on MRSA without detectable induced resistance. Additionally, they promote the polarization of macrophages from the M1 to M2 subtype, with the inhibiting pro-inflammatory cytokines and promoting anti-inflammatory factors. Correspondingly, GCDs are immobilized onto sulfonated polyether ether ketone (SP@GCDs) using a polyvinyl butyraldehyde (PVB) coating layer through soaking-drying technique. SP@GCDs maintain stable antibacterial efficacy against MRSA for six consecutive days and retain the immunomodulatory function, while also possessing the long-term storage stability and biocompatibility of more than 6 months. Moreover, SP@GCDs significantly promote the proliferation and mineralization of osteoblasts. SP@GCDs facilitate osteogenesis through immunoregulatory. Additionally, SP@GCDs exert stable antibacterial and immune regulatory functions in implantation site of a diabetes rat, effectively promoting implant osseointegration regardless of the MRSA infection. These findings provide valuable insights into implant modification through designing nanomaterials with multifunction for enhancing osseointegration of diabetes mellitus, suggesting the promising clinical application prospects.
Collapse
Affiliation(s)
- Xinxin Bai
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| | - Xintian Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Jiecheng Xiao
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| | - Xingyu Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| | - Rui Zhang
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| | - Xiaoqin Deng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Menghan Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Wenqin Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, P. R. China
| | - Bin Lan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, P. R. China
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Min Chen
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, P. R. China
| |
Collapse
|
13
|
Zhou Y, Guo L, Dai G, Li B, Bai Y, Wang W, Chen S, Zhang J. An Overview of Polymeric Nanoplatforms to Deliver Veterinary Antimicrobials. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:341. [PMID: 38392714 PMCID: PMC10893358 DOI: 10.3390/nano14040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024]
Abstract
There is an urgent need to find new solutions for the global dilemma of increasing antibiotic resistance in humans and animals. Modifying the performance of existing antibiotics using the nanocarrier drug delivery system (DDS) is a good option considering economic costs, labor costs, and time investment compared to the development of new antibiotics. Numerous studies on nanomedicine carriers that can be used for humans are available in the literature, but relatively few studies have been reported specifically for veterinary pharmaceutical products. Polymer-based nano-DDS are becoming a research hotspot in the pharmaceutical industry owing to their advantages, such as stability and modifiability. This review presents current research progress on polymer-based nanodelivery systems for veterinary antimicrobial drugs, focusing on the role of polymeric materials in enhancing drug performance. The use of polymer-based nanoformulations improves treatment compliance in livestock and companion animals, thereby reducing the workload of managers. Although promising advances have been made, many obstacles remain to be addressed before nanoformulations can be used in a clinical setting. Some crucial issues currently facing this field, including toxicity, quality control, and mass production, are discussed in this review. With the continuous optimization of nanotechnology, polymer-based DDS has shown its potential in reducing antibiotic resistance to veterinary medicines.
Collapse
Affiliation(s)
- Yaxin Zhou
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Z.); (G.D.); (B.L.); (Y.B.); (W.W.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Lihua Guo
- Shenniu Pharmaceutical Co., Ltd., Dezhou 253034, China;
| | - Guonian Dai
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Z.); (G.D.); (B.L.); (Y.B.); (W.W.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Bing Li
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Z.); (G.D.); (B.L.); (Y.B.); (W.W.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yubin Bai
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Z.); (G.D.); (B.L.); (Y.B.); (W.W.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Weiwei Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Z.); (G.D.); (B.L.); (Y.B.); (W.W.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A & F University, Yangling 712100, China
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Z.); (G.D.); (B.L.); (Y.B.); (W.W.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
14
|
Colilla M, Vallet-Regí M. Organically Modified Mesoporous Silica Nanoparticles against Bacterial Resistance. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:8788-8805. [PMID: 38027542 PMCID: PMC10653088 DOI: 10.1021/acs.chemmater.3c02192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Indexed: 12/01/2023]
Abstract
Bacterial antimicrobial resistance is posed to become a major hazard to global health in the 21st century. An aggravating issue is the stalled antibiotic research pipeline, which requires the development of new therapeutic strategies to combat antibiotic-resistant infections. Nanotechnology has entered into this scenario bringing up the opportunity to use nanocarriers capable of transporting and delivering antimicrobials to the target site, overcoming bacterial resistant barriers. Among them, mesoporous silica nanoparticles (MSNs) are receiving growing attention due to their unique features, including large drug loading capacity, biocompatibility, tunable pore sizes and volumes, and functionalizable silanol-rich surface. This perspective article outlines the recent research advances in the design and development of organically modified MSNs to fight bacterial infections. First, a brief introduction to the different mechanisms of bacterial resistance is presented. Then, we review the recent scientific approaches to engineer multifunctional MSNs conceived as an assembly of inorganic and organic building blocks, against bacterial resistance. These elements include specific ligands to target planktonic bacteria, intracellular bacteria, or bacterial biofilm; stimuli-responsive entities to prevent antimicrobial cargo release before arriving at the target; imaging agents for diagnosis; additional constituents for synergistic combination antimicrobial therapies; and aims to improve the therapeutic outcomes. Finally, this manuscript addresses the current challenges and future perspectives on this hot research area.
Collapse
Affiliation(s)
- Montserrat Colilla
- Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación
Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - María Vallet-Regí
- Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación
Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
15
|
Liu S, Ji Y, Zhu H, Shi Z, Li M, Yu Q. Gallium-based metal-organic frameworks loaded with antimicrobial peptides for synergistic killing of drug-resistant bacteria. J Mater Chem B 2023; 11:10446-10454. [PMID: 37888956 DOI: 10.1039/d3tb01754k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Increased antibiotic resistance has made bacterial infections a global concern, which requires novel non-antibiotic-dependent antibacterial strategies to address the menace. Antimicrobial peptides (AMPs) are a promising antibiotic alternative, whose antibacterial mechanism is mainly to destroy the membrane of bacteria. Gallium ions exhibit an antibacterial effect by interfering with the iron metabolism of bacteria. With the rapid development of nanotechnology, it is worth studying the potential of gallium-AMP-based nanocomposites for treating bacterial infections. Herein, novel gallium-based metal-organic frameworks (MOFs) were synthesized at room temperature, followed by in situ loading of the model AMP melittin. The obtained nanocomposites exhibited stronger antibacterial activity than pure MEL and gallium ions, achieving the effects of "one plus one is greater than two". Moreover, the nanocomposites showed favorable biocompatibility and accelerated healing of a wound infected by methicillin-resistant Staphylococcus aureus by down-regulation of inflammatory cytokines IL-6 and TNF-α. This work presents an innovative antibacterial strategy to overcome the antibiotic resistance crisis and expand the application of AMPs.
Collapse
Affiliation(s)
- Shuo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
- Research Center for Infectious Diseases, Nankai University, Tianjin 300350, China.
| | - Yuxin Ji
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hangqi Zhu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhishang Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingchun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin 300071, China
- Research Center for Infectious Diseases, Nankai University, Tianjin 300350, China.
| |
Collapse
|
16
|
Qi R, Cui Y, Liu J, Wang X, Yuan H. Recent Advances of Composite Nanomaterials for Antibiofilm Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2725. [PMID: 37836366 PMCID: PMC10574477 DOI: 10.3390/nano13192725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
A biofilm is a microbial community formed by bacteria that adsorb on the surface of tissues or materials and is wrapped in extracellular polymeric substances (EPS) such as polysaccharides, proteins and nucleic acids. As a protective barrier, the EPS can not only prevent the penetration of antibiotics and other antibacterial agents into the biofilm, but also protect the bacteria in the biofilm from the attacks of the human immune system, making it difficult to eradicate biofilm-related infections and posing a serious threat to public health. Therefore, there is an urgent need to develop new and efficient antibiofilm drugs. Although natural enzymes (lysozyme, peroxidase, etc.) and antimicrobial peptides have excellent bactericidal activity, their low stability in the physiological environment and poor permeability in biofilms limit their application in antibiofilms. With the development of materials science, more and more nanomaterials are being designed to be utilized for antimicrobial and antibiofilm applications. Nanomaterials have great application prospects in antibiofilm because of their good biocompati-bility, unique physical and chemical properties, adjustable nanostructure, high permeability and non-proneness to induce bacterial resistance. In this review, with the application of composite nanomaterials in antibiofilms as the theme, we summarize the research progress of three types of composite nanomaterials, including organic composite materials, inorganic materials and organic-inorganic hybrid materials, used as antibiofilms with non-phototherapy and phototherapy modes of action. At the same time, the challenges and development directions of these composite nanomaterials in antibiofilm therapy are also discussed. It is expected we will provide new ideas for the design of safe and efficient antibiofilm materials.
Collapse
Affiliation(s)
- Ruilian Qi
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (R.Q.); (Y.C.)
| | - Yuanyuan Cui
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (R.Q.); (Y.C.)
| | - Jian Liu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100090, China;
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (R.Q.); (Y.C.)
| |
Collapse
|
17
|
Li B, Liao Y, Su X, Chen S, Wang X, Shen B, Song H, Yue P. Powering mesoporous silica nanoparticles into bioactive nanoplatforms for antibacterial therapies: strategies and challenges. J Nanobiotechnology 2023; 21:325. [PMID: 37684605 PMCID: PMC10485977 DOI: 10.1186/s12951-023-02093-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Bacterial infection has been a major threat to worldwide human health, in particular with the ever-increasing level of antimicrobial resistance. Given the complex microenvironment of bacterial infections, conventional use of antibiotics typically renders a low efficacy in infection control, thus calling for novel strategies for effective antibacterial therapies. As an excellent candidate for antibiotics delivery, mesoporous silica nanoparticles (MSNs) demonstrate unique physicochemical advantages in antibacterial therapies. Beyond the delivery capability, extensive efforts have been devoted in engineering MSNs to be bioactive to further synergize the therapeutic effect in infection control. In this review, we critically reviewed the essential properties of MSNs that benefit their antibacterial application, followed by a themed summary of strategies in manipulating MSNs into bioactive nanoplatforms for enhanced antibacterial therapies. The chemically functionalized platform, photo-synergized platform, physical antibacterial platform and targeting-directed platform are introduced in details, where the clinical translation challenges of these MSNs-based antibacterial nanoplatforms are briefly discussed afterwards. This review provides critical information of the emerging trend in turning bioinert MSNs into bioactive antibacterial agents, paving the way to inspire and translate novel MSNs-based nanotherapies in combating bacterial infection diseases.
Collapse
Affiliation(s)
- Biao Li
- Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang, 330004, China
| | - Yan Liao
- Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang, 330004, China
| | - Xiaoyu Su
- Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang, 330004, China
| | - Shuiyan Chen
- Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang, 330004, China
| | - Xinmin Wang
- Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang, 330004, China
| | - Baode Shen
- Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang, 330004, China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Pengfei Yue
- Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang, 330004, China.
| |
Collapse
|
18
|
Wang J, Chen F, Chen QY, Wang GJ. Europium- and Black Phosphorus-Functionalized Porphyrin as an l-Arginine Sensor and l-Arginine-Activated PDT/PTT Agent for Bacterial Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41861-41869. [PMID: 37610772 DOI: 10.1021/acsami.3c07354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The attenuation of bacterial metabolism provides an adjunct to the treatment of bacterial infections. To develop a bacterial eradication agent, a bioactivatable material (BP@Eu-TCPP) was designed and synthesized by coordination and reduction of europium(III) with thin-layer black phosphorus (BP) and tetrakis (4-carboxyphenyl) porphyrin (TCPP). The existence of the P-Eu bond and Eu2+ 3d5/2 in X-ray photoelectron spectroscopy confirmed the successful synthesis of BP@Eu-TCPP. This material showed high fluorescence sensitivity to l-Arginine (l-Arg) and the main binding ratio of BP@Eu-TCPP to l-Arg was ca. 1:2 or 1:3, with the limit of detection of 4.0 μM. The material also showed good photothermal properties and stability, with a photothermal conversion efficiency of 37.3%. Although metal coordination has blocked the generation of 1O2, the addition of l-Arg to BP@Eu-TCPP can restore 1O2 generation upon red light-emitting diode (LED) light irradiation due to the formation of water-soluble Arg-TCPP species. Additionally, BP@Eu-TCPP was enabled to change the bacterial membrane and interfered with the bacterial iron absorption that effectively contributes to bacterial eradication. Such BP@Eu-TCPP is promised to be a novel material for the detection of l-Arg and l-Arg-activated photodynamic therapy.
Collapse
Affiliation(s)
- Jun Wang
- School of the Environment and Safety Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road, Jingkou District, Zhenjiang 212013, People's Republic of China
| | - Feng Chen
- School of the Environment and Safety Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road, Jingkou District, Zhenjiang 212013, People's Republic of China
| | - Qiu-Yun Chen
- School of the Environment and Safety Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road, Jingkou District, Zhenjiang 212013, People's Republic of China
| | - Gao-Ji Wang
- School of the Environment and Safety Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road, Jingkou District, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
19
|
Shakola TV, Rubanik VV, Rubanik VV, Kurliuk AV, Kirichuk AA, Tskhovrebov AG, Egorov AR, Kritchenkov AS. Benzothiazole Derivatives of Chitosan and Their Derived Nanoparticles: Synthesis and In Vitro and In Vivo Antibacterial Effects. Polymers (Basel) 2023; 15:3469. [PMID: 37631525 PMCID: PMC10459300 DOI: 10.3390/polym15163469] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/24/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
In this work, we focused on synthesizing and assessing novel chitosan-based antibacterial polymers and their nanoparticles by incorporating benzothiazole substituents. The growing resistance to antibiotics has necessitated the search for alternative antimicrobial compounds. This study aimed to synthesize and evaluate chitosan-based polymers and nanoparticles with benzothiazole substituents for their antibacterial properties and toxicity. The benzothiazole derivatives of chitosan and their nanoparticles were synthesized through electrochemical coupling. The in vivo antibacterial efficacy was tested on white rats with induced peritonitis using a microbial suspension containing S. aureus and E. coli. Additionally, in vitro and in vivo toxicity assessments were conducted. The chitosan-based antibacterial systems showed significant in vivo antibacterial activity, surpassing that of unmodified chitosan and commercial antibiotics. Moreover, the toxicity studies revealed low toxicity levels of the synthesized derivatives, which did not differ significantly from native chitosan. The synthesized chitosan-based polymers and nanoparticles demonstrated potent antibacterial activity and low toxicity, highlighting their potential as effective alternatives to traditional antibiotics. Further investigations in pharmacology and preclinical trials are recommended to explore their application in clinical settings.
Collapse
Affiliation(s)
- Tatsiana V. Shakola
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russia; (T.V.S.); (A.A.K.); (A.G.T.)
- Department of General and Clinical Pharmacology, Vitebsk State Medical University, Frunze Av. 27, 210009 Vitebsk, Belarus;
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.)
| | - Aleh V. Kurliuk
- Department of General and Clinical Pharmacology, Vitebsk State Medical University, Frunze Av. 27, 210009 Vitebsk, Belarus;
| | - Anatoly A. Kirichuk
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russia; (T.V.S.); (A.A.K.); (A.G.T.)
| | - Alexander G. Tskhovrebov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russia; (T.V.S.); (A.A.K.); (A.G.T.)
| | - Anton R. Egorov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russia; (T.V.S.); (A.A.K.); (A.G.T.)
| | - Andreii S. Kritchenkov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russia; (T.V.S.); (A.A.K.); (A.G.T.)
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.)
| |
Collapse
|
20
|
Ren W, Tang Q, Cao H, Wang L, Zheng X. Biological Preparation of Chitosan-Loaded Silver Nanoparticles: Study of Methylene Blue Adsorption as Well as Antibacterial Properties under Light. ACS OMEGA 2023; 8:22998-23007. [PMID: 37396237 PMCID: PMC10308547 DOI: 10.1021/acsomega.3c02111] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023]
Abstract
Human beings have made significant progress in the medical field since antibiotics were widely used. However, the consequences caused by antibiotics abuse have gradually shown their negative effects. Antibacterial photodynamic therapy (aPDT) has the ability to resist drug-resistant bacteria without antibiotics, and as it is increasingly recognized that nanoparticles can effectively solve the deficiency problem of singlet oxygen produced by photosensitizers, the application performance and scope of aPDT are gradually being expanded. In this study, we used a biological template method to reduce Ag+ to silver atoms in situ with bovine serum albumin (BSA) rich in various functional groups in a 50 °C water bath. The aggregation of nanomaterials was inhibited by the protein's multistage structure so that the formed nanomaterials have good dispersion and stability. It is unexpected that we used chitosan microspheres (CMs) loaded with silver nanoparticles (AgNPs) to adsorb methylene blue (MB), which is both a pollutant and photosensitive substance. The Langmuir adsorption isothermal curve was used to fit the adsorption capacity. The exceptional multi-bond angle chelating forceps of chitosan make it have a powerful physical adsorption capacity, and dehydrogenated functional groups of proteins with negative charge can also bond to positively charged MB to form a certain amount of ionic bonds. Compared with single bacteriostatic materials, the bacteriostatic capacity of the composite materials adsorbing MB under light was significantly improved. This composite material not only has a strong inhibitory effect on Gram-negative bacteria but also has a good inhibitory effect on the growth of Gram-positive bacteria poorly affected by conventional bacteriostatic agents. In conclusion, the CMs loaded with MB and AgNPs have some possible applications in the purification or treatment of wastewater in the future.
Collapse
Affiliation(s)
- Wensheng Ren
- College
of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
| | - Qian Tang
- Liaoning
Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian 116622, China
- College
of Life and healthy, Dalian University, Dalian 116622, China
| | - Hongyu Cao
- Liaoning
Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian 116622, China
- College
of Life and healthy, Dalian University, Dalian 116622, China
| | - Lihao Wang
- College
of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
- Liaoning
Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian 116622, China
| | - Xuefang Zheng
- College
of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
- Liaoning
Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian 116622, China
| |
Collapse
|
21
|
Sun B, Wang X, Ye Z, Zhang J, Chen X, Zhou N, Zhang M, Yao C, Wu F, Shen J. Designing Single-Atom Active Sites on sp 2 -Carbon Linked Covalent Organic Frameworks to Induce Bacterial Ferroptosis-Like for Robust Anti-Infection Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207507. [PMID: 36847061 PMCID: PMC10161020 DOI: 10.1002/advs.202207507] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/03/2023] [Indexed: 05/06/2023]
Abstract
With the threat posed by drug-resistant pathogenic bacteria, developing non-antibiotic strategies for eradicating clinically prevalent superbugs remains challenging. Ferroptosis is a newly discovered form of regulated cell death that can overcome drug resistance. Emerging evidence shows the potential of triggering ferroptosis-like for antibacterial therapy, but the direct delivery of iron species is inefficient and may cause detrimental effects. Herein, an effective strategy to induce bacterial nonferrous ferroptosis-like by coordinating single-atom metal sites (e.g., Ir and Ru) into the sp2 -carbon-linked covalent organic framework (sp2 c-COF-Ir-ppy2 and sp2 c-COF-Ru-bpy2 ) is reported. Upon activating by light irradiation or hydrogen peroxide, the as-constructed Ir and Ru single-atom catalysts (SACs) can significantly expedite intracellular reactive oxygen species burst, enhance glutathione depletion-related glutathione peroxidase 4 deactivation, and disturb the nitrogen and respiratory metabolisms, leading to lipid peroxidation-driven ferroptotic damage. Both SAC inducers show potent antibacterial activity against Gram-positive bacteria, Gram-negative bacteria, clinically isolated methicillin-resistant Staphylococcus aureus (MRSA), and biofilms, as well as excellent biocompatibility and strong therapeutic and preventive potential in MRSA-infected wounds and abscesses. This delicate nonferrous ferroptosis-like strategy may open up new insights into the therapy of drug-resistant pathogen infection.
Collapse
Affiliation(s)
- Baohong Sun
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
- School of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816P. R. China
| | - Xinye Wang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Ziqiu Ye
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Juyang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Xiong Chen
- School of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816P. R. China
| | - Ninglin Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Ming Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Cheng Yao
- School of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816P. R. China
| | - Fan Wu
- Key Laboratory of Cardiovascular and Cerebrovascular MedicineSchool of PharmacyNanjing Medical UniversityNanjing211166P. R. China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
- Jiangsu Engineering Research Center of Interfacial ChemistryNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
22
|
Thulasinathan B, D S, Murugan S, Panda SK, Veerapandian M, Manickam P. DNA-functionalized carbon quantum dots for electrochemical detection of pyocyanin: A quorum sensing molecule in Pseudomonas aeruginosa. Biosens Bioelectron 2023; 227:115156. [PMID: 36842368 DOI: 10.1016/j.bios.2023.115156] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
The electrochemical biosensing strategy for pyocyanin (PYO), a virulent quorum-sensing molecule responsible for Pseudomonas aeruginosa infections, was developed by mimicking its extracellular DNA interaction. Calf thymus DNA (ct-DNA) functionalized amine-containing carbon quantum dots (CQDs) were used as a biomimetic receptor for electrochemical sensing of PYO as low as 37 nM in real urine sample. The ct-DNA-based biosensor enabled the selective measurement of PYO in the presence of other interfering species. Calibration and validation of the PYO sensor platform were demonstrated in buffer solution (0-100 μM), microbial culture media (0-100 μM), artificial urine (0-400 μM), and real urine sample (0-250 μM). The sensor capability was successfully implemented for point-of-care (POC) detection of PYO release from Pseudomonas aeruginosa strains during lag and stationary phases. Cross-reactivity of the sensing platform was also tested in other bacterial species such as Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Shigella dysenteriae, Staphylococcus aureus, and Streptococcus pneumoniae. Potential clinical implementation of the ct-DNA-based sensor was manifested in detecting the PYO in P. aeruginosa cultured baby diaper and sanitary napkin. Our results highlight that the newly developed ct-DNA-based sensing platform can be used as a potential candidate for real-time POC diagnosis of Pseudomonas aeruginosa infection in clinical samples.
Collapse
Affiliation(s)
- Boobalan Thulasinathan
- Electrodics & Electrocatalysis Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India
| | - Sujatha D
- Electroplating and Metal Finishing Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India
| | - Sethupathi Murugan
- Electroplating and Metal Finishing Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India
| | - Subhendu K Panda
- Electroplating and Metal Finishing Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India
| | - Murugan Veerapandian
- Electrodics & Electrocatalysis Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India
| | - Pandiaraj Manickam
- Electrodics & Electrocatalysis Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India.
| |
Collapse
|
23
|
Zhao A, Sun J, Liu Y. Understanding bacterial biofilms: From definition to treatment strategies. Front Cell Infect Microbiol 2023; 13:1137947. [PMID: 37091673 PMCID: PMC10117668 DOI: 10.3389/fcimb.2023.1137947] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Bacterial biofilms are complex microbial communities encased in extracellular polymeric substances. Their formation is a multi-step process. Biofilms are a significant problem in treating bacterial infections and are one of the main reasons for the persistence of infections. They can exhibit increased resistance to classical antibiotics and cause disease through device-related and non-device (tissue) -associated infections, posing a severe threat to global health issues. Therefore, early detection and search for new and alternative treatments are essential for treating and suppressing biofilm-associated infections. In this paper, we systematically reviewed the formation of bacterial biofilms, associated infections, detection methods, and potential treatment strategies, aiming to provide researchers with the latest progress in the detection and treatment of bacterial biofilms.
Collapse
Affiliation(s)
- Ailing Zhao
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Jiazheng Sun
- Department of Vasculocardiology, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yipin Liu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
- *Correspondence: Yipin Liu,
| |
Collapse
|
24
|
ZnO@ZIF-8 Nanoparticles as Nanocarrier of Ciprofloxacin for Antimicrobial Activity. Pharmaceutics 2023; 15:pharmaceutics15010259. [PMID: 36678888 PMCID: PMC9863207 DOI: 10.3390/pharmaceutics15010259] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Numerous antimicrobial drugs have been prescribed to kill or inhibit the growth of microbes such as bacteria, fungi, and viruses. Despite the known therapeutic efficacy of these drugs, inefficient delivery could result in an inadequate therapeutic index and several side effects. In order to overcome this adversity, the present study investigated antibiotic drug loading in zeolitic imidazolate frameworks (ZIFs), in association with ZnO nanoparticles with known antimicrobial properties. In an economic synthesis method, the ZnO surface was first converted to ZIF-8 with 2-methylimidazole as a ligand, resulting in a ZnO@ZIF-8 structure. This system enables the high drug-loading efficiency (46%) of an antimicrobial drug, ciprofloxacin, within the pores of the ZIF-8. This association provides a control of the release of the active moieties, in simulated body-fluid conditions, with a maximum of 67% released in 96 h. The antibacterial activities of ZnO@ZIF-8 and CIP-ZnO@ZIF-8 were tested against the Gram-positive Staphylococcus aureus strain and the Gram-negative Pseudomonas aeruginosa strain, showing good growth inhibition. This result was obtained by combining ZnO@ZIF-8 with ciprofloxacin in a minimal inhibitory concentration (MIC) that was 10 times lower than ZnO@ZIF-8 for S. aureus and 200 times lower for P. aeruginosa, suggesting that CIP-ZnO@ZIF-8 may have potential application in prolonged antimicrobial treatment.
Collapse
|
25
|
Ye J, Chen X. Current Promising Strategies against Antibiotic-Resistant Bacterial Infections. Antibiotics (Basel) 2022; 12:antibiotics12010067. [PMID: 36671268 PMCID: PMC9854991 DOI: 10.3390/antibiotics12010067] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Infections caused by antibiotic-resistant bacteria (ARB) are one of the major global health challenges of our time. In addition to developing new antibiotics to combat ARB, sensitizing ARB, or pursuing alternatives to existing antibiotics are promising options to counter antibiotic resistance. This review compiles the most promising anti-ARB strategies currently under development. These strategies include the following: (i) discovery of novel antibiotics by modification of existing antibiotics, screening of small-molecule libraries, or exploration of peculiar places; (ii) improvement in the efficacy of existing antibiotics through metabolic stimulation or by loading a novel, more efficient delivery systems; (iii) development of alternatives to conventional antibiotics such as bacteriophages and their encoded endolysins, anti-biofilm drugs, probiotics, nanomaterials, vaccines, and antibody therapies. Clinical or preclinical studies show that these treatments possess great potential against ARB. Some anti-ARB products are expected to become commercially available in the near future.
Collapse
|
26
|
Massaro M, Ciani R, Cinà G, Colletti CG, Leone F, Riela S. Antimicrobial Nanomaterials Based on Halloysite Clay Mineral: Research Advances and Outlook. Antibiotics (Basel) 2022; 11:antibiotics11121761. [PMID: 36551418 PMCID: PMC9774400 DOI: 10.3390/antibiotics11121761] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial infections represent one of the major causes of mortality worldwide. Therefore, over the years, several nanomaterials with antibacterial properties have been developed. In this context, clay minerals, because of their intrinsic properties, have been efficiently used as antimicrobial agents since ancient times. Halloysite nanotubes are one of the emerging nanomaterials that have found application as antimicrobial agents in several fields. In this review, we summarize some examples of the use of pristine and modified halloysite nanotubes as antimicrobial agents, scaffolds for wound healing and orthopedic implants, fillers for active food packaging, and carriers for pesticides in food pest control.
Collapse
|
27
|
Soni M, Handa M, Singh KK, Shukla R. Recent nanoengineered diagnostic and therapeutic advancements in management of Sepsis. J Control Release 2022; 352:931-945. [PMID: 36273527 PMCID: PMC9665001 DOI: 10.1016/j.jconrel.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
COVID-19 acquired symptoms have affected the worldwide population and increased the load of Intensive care unit (ICU) patient admissions. A large number of patients admitted to ICU end with a deadly fate of mortality. A high mortality rate of patients was reported with hospital-acquired septic shock that leads to multiple organ failures and ultimately ends with death. The patients who overcome this septic shock suffer from morbidity that also affects their caretakers. To overcome these situations, scientists are exploring progressive theragnostic techniques with advanced techniques based on biosensors, biomarkers, biozymes, vesicles, and others. These advanced techniques pave the novel way for early detection of sepsis-associated symptoms and timely treatment with appropriate antibiotics and immunomodulators and prevent the undue effect on other parts of the body. There are other techniques like externally modulated electric-based devices working on the principle of piezoelectric mechanism that not only sense the endotoxin levels but also target them with a loaded antibiotic to neutralize the onset of inflammatory response. Recently researchers have developed a lipopolysaccharide (LPS) neutralizing cartridge that not only senses the LPS but also appropriately neutralizes with dual mechanistic insights of antibiotic and anti-inflammatory effects. This review will highlight recent developments in the new nanotechnology-based approaches for the diagnosis and therapeutics of sepsis that is responsible for the high number of deaths of patients suffering from this critical disease.
Collapse
Affiliation(s)
- Mukesh Soni
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, U.P., India
| | - Mayank Handa
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, U.P., India
| | - Kamalinder K. Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK,Correspondence to: Prof. Kamalinder K. Singh, School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, U.P., India,School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK,Correspondence to: Dr. Rahul Shukla (M. Pharm. PhD), National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow 226002, UP, India
| |
Collapse
|