1
|
Pereira AC, Nayak VV, Coelho PG, Witek L. Integrative Modeling and Experimental Insights into 3D and 4D Printing Technologies. Polymers (Basel) 2024; 16:2686. [PMID: 39408397 PMCID: PMC11479055 DOI: 10.3390/polym16192686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
This review focuses on advancements in polymer science as it relates to three-dimensional (3D) and four-dimensional (4D) printing technologies, with a specific emphasis on applications in the biomedical field. While acknowledging the breadth of 3D and 4D printing applications, this paper concentrates on the use of polymers in creating biomedical devices and the challenges associated with their implementation. It explores integrative modeling and experimental insights driving innovations in these fields, focusing on sustainable manufacturing with biodegradable polymers, a comparative analysis of 3D and 4D printing techniques, and applications in biomedical devices. Additionally, the review examines the materials used in both 3D and 4D printing, offering a detailed comparison of their properties and applications. By highlighting the transformative potential of these technologies in various industrial and medical applications, the paper underscores the importance of continued research and development. The scope of this review also includes an overview of future research directions to address current challenges, enhance material capabilities, and explore practical applications.
Collapse
Affiliation(s)
- Angel Cabrera Pereira
- Department of Biomedical Engineering, City College of New York, New York, NY 10031, USA;
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| |
Collapse
|
2
|
Liu Z, Huang J, Fang D, Feng B, Luo J, Lei P, Chen X, Xie Q, Chen M, Chen P. Material extrusion 3D-printing technology: A new strategy for constructing water-soluble, high-dose, sustained-release drug formulations. Mater Today Bio 2024; 27:101153. [PMID: 39081462 PMCID: PMC11287018 DOI: 10.1016/j.mtbio.2024.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
The advantage of low-temperature forming through direct ink writing (DIW) 3D printing is becoming a strategy for the construction of innovative drug delivery systems (DDSs). Optimization of the complex formulation, including factors such as the printing ink, presence of solvents, and potential low mechanical strength, are challenges during process development. This study presents an application of DIW to fabricate water-soluble, high-dose, and sustained-release DDSs. Utilizing poorly compressible metformin hydrochloride as a model drug, a core-shell delivery system was developed, featuring a core composed of 96 % drug powder and 4 % binder, with a shell structure serving as a drug-release barrier. This design aligns with the sustained-release profile of traditional processes, achieving a 25.8 % reduction in volume and enhanced mechanical strength. The strategy facilitates sustained release of high-dose water-soluble formulations for over 12 h, potentially improving patient compliance by reducing formulation size. Process optimization and multi-batch flexibility were also explored in this study. Our findings provide a valuable reference for the development of innovative DDSs and 3D-printed drugs.
Collapse
Affiliation(s)
- Zhiting Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiaying Huang
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- YUEBEI People’s Hospital, Shaoguan, 512026, China
| | - Danqiao Fang
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Bohua Feng
- Guangdong Province Engineering & Technology Research Center for Medical 3D Printer and Personalized Medicine, Guangzhou, 510006, China
| | - Jianxu Luo
- Guangdong Province Engineering & Technology Research Center for Medical 3D Printer and Personalized Medicine, Guangzhou, 510006, China
| | - Peixuan Lei
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaoling Chen
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qingchun Xie
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Peihong Chen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
3
|
Poudel I, Mita N, Babu RJ. 3D printed dosage forms, where are we headed? Expert Opin Drug Deliv 2024:1-20. [PMID: 38993098 DOI: 10.1080/17425247.2024.2379943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION 3D Printing (3DP) is an innovative fabrication technology that has gained enormous popularity through its paradigm shifts in manufacturing in several disciplines, including healthcare. In this past decade, we have witnessed the impact of 3DP in drug product development. Almost 8 years after the first USFDA approval of the 3D printed tablet Levetiracetam (Spritam), the interest in 3DP for drug products is high. However, regulatory agencies have often questioned its large-scale industrial practicability, and 3DP drug approval/guidelines are yet to be streamlined. AREAS COVERED In this review, major technologies involved with the fabrication of drug products are introduced along with the prospects of upcoming technologies, including AI (Artificial Intelligence). We have touched upon regulatory updates and discussed the burning limitations, which require immediate focus, illuminating status, and future perspectives on the near future of 3DP in the pharmaceutical field. EXPERT OPINION 3DP offers significant advantages in rapid prototyping for drug products, which could be beneficial for personalizing patient-based pharmaceutical dispensing. It seems inevitable that the coming decades will be marked by exponential growth in personalization, and 3DP could be a paradigm-shifting asset for pharmaceutical professionals.
Collapse
Affiliation(s)
- Ishwor Poudel
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| | - Nur Mita
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Faculty of Pharmacy, Mulawarman University, Samarinda, Kalimantan Timur, Indonesia
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| |
Collapse
|
4
|
Kreft K, Fanous M, Möckel V. The potential of three-dimensional printing for pediatric oral solid dosage forms. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:229-248. [PMID: 38815205 DOI: 10.2478/acph-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 06/01/2024]
Abstract
Pediatric patients often require individualized dosing of medicine due to their unique pharmacokinetic and developmental characteristics. Current methods for tailoring the dose of pediatric medications, such as tablet splitting or compounding liquid formulations, have limitations in terms of dosing accuracy and palatability. This paper explores the potential of 3D printing as a solution to address the challenges and provide tailored doses of medication for each pediatric patient. The technological overview of 3D printing is discussed, highlighting various 3D printing technologies and their suitability for pharmaceutical applications. Several individualization options with the potential to improve adherence are discussed, such as individualized dosage, custom release kinetics, tablet shape, and palatability. To integrate the preparation of 3D printed medication at the point of care, a decentralized manufacturing model is proposed. In this setup, pharmaceutical companies would routinely provide materials and instructions for 3D printing, while specialized compounding centers or hospital pharmacies perform the printing of medication. In addition, clinical opportunities of 3D printing for dose-finding trials are emphasized. On the other hand, current challenges in adequate dosing, regulatory compliance, adherence to quality standards, and maintenance of intellectual property need to be addressed for 3D printing to close the gap in personalized oral medication.
Collapse
Affiliation(s)
- Klemen Kreft
- 1Lek Pharmaceuticals d.d., a Sandoz Company, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
5
|
Milliken RL, Quinten T, Andersen SK, Lamprou DA. Application of 3D printing in early phase development of pharmaceutical solid dosage forms. Int J Pharm 2024; 653:123902. [PMID: 38360287 DOI: 10.1016/j.ijpharm.2024.123902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Three-dimensional printing (3DP) is an emerging technology, offering the possibility for the development of dose-customized, effective, and safe solid oral dosage forms (SODFs). Although 3DP has great potential, it does come with certain limitations, and the traditional drug manufacturing platforms remain the industry standard. The consensus appears to be that 3DP technology is expected to benefit personalized medicine the most, but that it is unlikely to replace conventional manufacturing for mass production. The 3DP method, on the other hand, could prove well-suited for producing small batches as an adaptive manufacturing technique for enabling adaptive clinical trial design for early clinical studies. The purpose of this review is to discuss recent advancements in 3DP technologies for SODFs and to focus on the applications for SODFs in the early clinical development stages, including a discussion of current regulatory challenges and quality controls.
Collapse
Affiliation(s)
- Rachel L Milliken
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Thomas Quinten
- Janssen Pharmaceutica, Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Sune K Andersen
- Janssen Pharmaceutica, Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
6
|
Pan S, Ding S, Zhou X, Zheng N, Zheng M, Wang J, Yang Q, Yang G. 3D-printed dosage forms for oral administration: a review. Drug Deliv Transl Res 2024; 14:312-328. [PMID: 37620647 DOI: 10.1007/s13346-023-01414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Oral administration is the most commonly used form of treatment due to its advantages, including high patient compliance, convenient administration, and minimal preparation required. However, the traditional preparation process of oral solid preparation has many defects. Although continuous manufacturing line that combined all the unit operations has been developed and preliminarily applied in the pharmaceutical industry, most of the currently used manufacturing processes are still complicated and discontinuous. As a result, these complex production steps will lead to low production efficiency and high quality control risk of the final product. Additionally, the large-scale production mode is inappropriate for the personalized medicines, which commonly is customized with small amount. Several attractive techniques, such as hot-melt extrusion, fluidized bed pelletizing and spray drying, could effectively shorten the process flow, but still, they have inherent limitations that are challenging to address. As a novel manufacturing technique, 3D printing could greatly reduce or eliminate these disadvantages mentioned above, and could realize a desirable continuous production for small-scale personalized manufacturing. In recent years, due to the participation of 3D printing, the development of printed drugs has progressed by leaps and bounds, especially in the design of oral drug dosage forms. This review attempts to summarize the new development of 3D printing technology in oral preparation and also discusses their advantages and disadvantages as well as potential applications.
Collapse
Affiliation(s)
- Siying Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Sheng Ding
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xuhui Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ning Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Meng Zheng
- Huiyuan Pharmaceutical Co., Ltd, Huiyuan Medical Health Industrial Park, Heping Town, Changxing County, Huzhou, 313100, China
| | - Juan Wang
- Huiyuan Pharmaceutical Co., Ltd, Huiyuan Medical Health Industrial Park, Heping Town, Changxing County, Huzhou, 313100, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
- Huiyuan Pharmaceutical Co., Ltd, Huiyuan Medical Health Industrial Park, Heping Town, Changxing County, Huzhou, 313100, China.
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
- Huiyuan Pharmaceutical Co., Ltd, Huiyuan Medical Health Industrial Park, Heping Town, Changxing County, Huzhou, 313100, China.
| |
Collapse
|
7
|
Aguilar-de-Leyva Á, Linares V, Domínguez-Robles J, Casas M, Caraballo I. Extrusion-based technologies for 3D printing: a comparative study of the processability of thermoplastic polyurethane-based formulations. Pharm Dev Technol 2023; 28:939-947. [PMID: 37878535 DOI: 10.1080/10837450.2023.2274945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Thermoplastic polyurethanes (TPU) offer excellent properties for a wide range of dosage forms. These polymers have been successfully utilized in personalized medicine production using fused deposition modeling (FDM) 3D printing (3DP). However, direct powder extrusion (DPE) has been introduced recently as a challenging technique since it eliminates filament production before 3DP, reducing thermal stress, production time, and costs. This study compares DPE and single-screw extrusion for binary (drug-TPU) and ternary (drug-TPU-magnesium stearate [MS]) mixtures containing from 20 to 60% w/w of theophylline. Powder flow, mechanical properties, fractal analysis, and percolation theory were utilized to analyze critical properties of the extrudates. All the mixtures could be processed at a temperature range between 130 and 160 °C. Extrudates containing up to 50% w/w of drug (up to 30% w/w of drug in the case of single-screw extrusion binary filaments) showed toughness values above the critical threshold of 80 kg/mm2. MS improved flow in mixtures where the drug is the only percolating component, reduced until 25 °C the DPE temperature and decreased the extrudate roughness in high drug content systems. The potential of DPE as an efficient one-step additive manufacturing technique in healthcare environments to produce TPU-based tailored on-demand medicines has been demonstrated.
Collapse
Affiliation(s)
- Ángela Aguilar-de-Leyva
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
| | - Vicente Linares
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
| | - Juan Domínguez-Robles
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
| | - Marta Casas
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
| | - Isidoro Caraballo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
8
|
Liu Y, M Leonova A, Royall PG, Abdillah Akbar BVEB, Cao Z, Jones SA, Isreb A, Hawcutt DB, Alhnan MA. Laser-cutting: A novel alternative approach for point-of-care manufacturing of bespoke tablets. Int J Pharm 2023; 647:123518. [PMID: 37852311 DOI: 10.1016/j.ijpharm.2023.123518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/02/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
A novel subtractive manufacturing method to produce bespoke tablets with immediate and extended drug release is presented. This is the first report on applying fusion laser cutting to produce bespoke furosemide solid dosage forms based on pharmaceutical-grade polymeric carriers. Cylindric tablets of different sizes were produced by controlling the two-dimensional design of circles of the corresponding diameter. Immediate and extended drug release patterns were achieved by modifying the composition of the polymeric matrix. Thermal analysis and XRD indicated that furosemide was present in an amorphous form. The laser-cut tablets demonstrated no significant drug degradation (<2%) nor the formation of impurities were identified. Multi-linear regression was used to quantify the influences of laser-cutting process parameters (laser energy levels, scan speeds, and the number of laser applications) on the depth of the laser cut. The utility of this approach was exemplified by manufacturing tablets of accurate doses of furosemide. Unlike additive or formative manufacturing, the reported approach of subtractive manufacturing avoids the modification of the structure, e.g., the physical form of the drug or matrix density of the tablet during the production process. Hence, fusion laser cutting is less likely to modify critical quality attributes such as release patterns or drug contents. In a point-of-care manufacturing scenario, laser cutting offers a significant advantage of simplifying quality control and a real-time release of laser-cut products such as solid dosage forms and implants.
Collapse
Affiliation(s)
- Yujing Liu
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Anna M Leonova
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Paul G Royall
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Bambang V E B Abdillah Akbar
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Zhengge Cao
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Stuart A Jones
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Abdullah Isreb
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Daniel B Hawcutt
- NIHR Alder Hey Clinical Research Facility, Alder Hey Children's NHS Foundation Trust, Liverpool, UK; Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Mohamed A Alhnan
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK.
| |
Collapse
|
9
|
Madadian Bozorg N, Leclercq M, Lescot T, Bazin M, Gaudreault N, Dikpati A, Fortin MA, Droit A, Bertrand N. Design of experiment and machine learning inform on the 3D printing of hydrogels for biomedical applications. BIOMATERIALS ADVANCES 2023; 153:213533. [PMID: 37392520 DOI: 10.1016/j.bioadv.2023.213533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/30/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
In the biomedical field, 3D printing has the potential to deliver on some of the promises of personalized therapy, notably by enabling point-of-care fabrication of medical devices, dosage forms and bioimplants. To achieve this full potential, a better understanding of the 3D printing processes is necessary, and non-destructive characterization methods must be developed. This study proposes methodologies to optimize the 3D printing parameters for soft material extrusion. We hypothesize that combining image processing with design of experiment (DoE) analyses and machine learning could help obtaining useful information from a quality-by-design perspective. Herein, we investigated the impact of three critical process parameters (printing speed, printing pressure and infill percentage) on three critical quality attributes (gel weight, total surface area and heterogeneity) monitored with a non-destructive methodology. DoE and machine learning were combined to obtain information on the process. This work paves the way for a rational approach to optimize 3D printing parameters in the biomedical field.
Collapse
Affiliation(s)
- Neda Madadian Bozorg
- Faculté de Pharmacie, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Quebec City, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec, Université Laval, Axe Endocrinologie et Néphrologie, Quebec City, QC G1V 4G2, Canada
| | - Mickael Leclercq
- Centre de Recherche du CHU de Québec, Université Laval, Axe Endocrinologie et Néphrologie, Quebec City, QC G1V 4G2, Canada
| | - Théophraste Lescot
- Faculté des Sciences et Génie, Département de Génie des Mines, de la Métallurgie et des Matériaux, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Québec City G1V 0A6, Canada; Centre de Recherche du CHU de Québec, Université Laval, Axe Médecine Régénératrice, Quebec City, QC G1V 4G2, Canada
| | - Marc Bazin
- Centre de Recherche du CHU de Québec, Université Laval, Axe Neurosciences, Quebec City, QC G1V 4G2, Canada
| | - Nicolas Gaudreault
- Faculté de Pharmacie, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Quebec City, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec, Université Laval, Axe Endocrinologie et Néphrologie, Quebec City, QC G1V 4G2, Canada
| | - Amrita Dikpati
- Faculté de Pharmacie, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Quebec City, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec, Université Laval, Axe Endocrinologie et Néphrologie, Quebec City, QC G1V 4G2, Canada
| | - Marc-André Fortin
- Faculté des Sciences et Génie, Département de Génie des Mines, de la Métallurgie et des Matériaux, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Québec City G1V 0A6, Canada; Centre de Recherche du CHU de Québec, Université Laval, Axe Médecine Régénératrice, Quebec City, QC G1V 4G2, Canada
| | - Arnaud Droit
- Centre de Recherche du CHU de Québec, Université Laval, Axe Endocrinologie et Néphrologie, Quebec City, QC G1V 4G2, Canada; Faculté de Médicine, Département de Médecine Moléculaire, Université Laval, Québec City G1V 0A6, Canada
| | - Nicolas Bertrand
- Faculté de Pharmacie, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Quebec City, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec, Université Laval, Axe Endocrinologie et Néphrologie, Quebec City, QC G1V 4G2, Canada.
| |
Collapse
|
10
|
Shojaie F, Ferrero C, Caraballo I. Development of 3D-Printed Bicompartmental Devices by Dual-Nozzle Fused Deposition Modeling (FDM) for Colon-Specific Drug Delivery. Pharmaceutics 2023; 15:2362. [PMID: 37765330 PMCID: PMC10535423 DOI: 10.3390/pharmaceutics15092362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Dual-nozzle fused deposition modeling (FDM) is a 3D printing technique that allows for the simultaneous printing of two polymeric filaments and the design of complex geometries. Hence, hybrid formulations and structurally different sections can be combined into the same dosage form to achieve customized drug release kinetics. The objective of this study was to develop a novel bicompartmental device by dual-nozzle FDM for colon-specific drug delivery. Hydroxypropylmethylcellulose acetate succinate (HPMCAS) and polyvinyl alcohol (PVA) were selected as matrix-forming polymers of the outer pH-dependent and the inner water-soluble compartments, respectively. 5-Aminosalicylic acid (5-ASA) was selected as the model drug. Drug-free HPMCAS and drug-loaded PVA filaments suitable for FDM were extruded, and their properties were assessed by thermal, X-ray diffraction, microscopy, and texture analysis techniques. 5-ASA (20% w/w) remained mostly crystalline in the PVA matrix. Filaments were successfully printed into bicompartmental devices combining an outer cylindrical compartment and an inner spiral-shaped compartment that communicates with the external media through an opening. Scanning electron microscopy and X-ray tomography analysis were performed to guarantee the quality of the 3D-printed devices. In vitro drug release tests demonstrated a pH-responsive biphasic release pattern: a slow and sustained release period (pH values of 1.2 and 6.8) controlled by drug diffusion followed by a faster drug release phase (pH 7.4) governed by polymer relaxation/erosion. Overall, this research demonstrates the feasibility of the dual-nozzle FDM technique to obtain an innovative 3D-printed bicompartmental device for targeting 5-ASA to the colon.
Collapse
Affiliation(s)
| | - Carmen Ferrero
- Departamento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González No. 2, 41012 Sevilla, Spain; (F.S.); (I.C.)
| | | |
Collapse
|
11
|
Celestino MF, Lima LR, Fontes M, Batista ITS, Mulinari DR, Dametto A, Rattes RA, Amaral AC, Assunção RMN, Ribeiro CA, Castro GR, Barud HS. 3D Filaments Based on Polyhydroxy Butyrate-Micronized Bacterial Cellulose for Tissue Engineering Applications. J Funct Biomater 2023; 14:464. [PMID: 37754878 PMCID: PMC10531805 DOI: 10.3390/jfb14090464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
In this work, scaffolds based on poly(hydroxybutyrate) (PHB) and micronized bacterial cellulose (BC) were produced through 3D printing. Filaments for the printing were obtained by varying the percentage of micronized BC (0.25, 0.50, 1.00, and 2.00%) inserted in relation to the PHB matrix. Despite the varying concentrations of BC, the biocomposite filaments predominantly contained PHB functional groups, as Fourier transform infrared spectroscopy (FTIR) demonstrated. Thermogravimetric analyses (i.e., TG and DTG) of the filaments showed that the peak temperature (Tpeak) of PHB degradation decreased as the concentration of BC increased, with the lowest being 248 °C, referring to the biocomposite filament PHB/2.0% BC, which has the highest concentration of BC. Although there was a variation in the thermal behavior of the filaments, it was not significant enough to make printing impossible, considering that the PHB melting temperature was 170 °C. Biological assays indicated the non-cytotoxicity of scaffolds and the provision of cell anchorage sites. The results obtained in this research open up new paths for the application of this innovation in tissue engineering.
Collapse
Affiliation(s)
- Matheus F. Celestino
- Biopolymers and Biomaterials Group, Postgraduate Program in Biotechnology, University of Araraquara (UNIARA), Araraquara 14801-320, SP, Brazil (I.T.S.B.); (A.C.A.)
| | - Lais R. Lima
- Institute of Chemistry, University of São Paulo (USP), São Carlos 13566-590, SP, Brazil;
| | - Marina Fontes
- Biopolymers and Biomaterials Group, Postgraduate Program in Biotechnology, University of Araraquara (UNIARA), Araraquara 14801-320, SP, Brazil (I.T.S.B.); (A.C.A.)
- Biosmart Nanotechnology LTDA, Araraquara 14808-162, SP, Brazil
| | - Igor T. S. Batista
- Biopolymers and Biomaterials Group, Postgraduate Program in Biotechnology, University of Araraquara (UNIARA), Araraquara 14801-320, SP, Brazil (I.T.S.B.); (A.C.A.)
| | - Daniella R. Mulinari
- Department of Mechanics and Energy, State University of Rio de Janeiro (UEJR), Rio de Janeiro 20550-900, RJ, Brazil
| | | | - Raphael A. Rattes
- Biopolymers and Biomaterials Group, Postgraduate Program in Biotechnology, University of Araraquara (UNIARA), Araraquara 14801-320, SP, Brazil (I.T.S.B.); (A.C.A.)
| | - André C. Amaral
- Biopolymers and Biomaterials Group, Postgraduate Program in Biotechnology, University of Araraquara (UNIARA), Araraquara 14801-320, SP, Brazil (I.T.S.B.); (A.C.A.)
| | - Rosana M. N. Assunção
- Faculty of Integrated Sciences of Pontal (FACIP), Federal University of Uberlandia (UFU), Pontal Campus, Ituiutaba 38304-402, MG, Brazil
| | - Clovis A. Ribeiro
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-900, SP, Brazil
| | - Guillermo R. Castro
- Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
| | - Hernane S. Barud
- Biopolymers and Biomaterials Group, Postgraduate Program in Biotechnology, University of Araraquara (UNIARA), Araraquara 14801-320, SP, Brazil (I.T.S.B.); (A.C.A.)
| |
Collapse
|
12
|
Krueger L, Cao Y, Zheng Z, Ward J, Miles JA, Popat A. 3D printing tablets for high-precision dose titration of caffeine. Int J Pharm 2023; 642:123132. [PMID: 37315638 DOI: 10.1016/j.ijpharm.2023.123132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Through 3D printing (3DP), many parameters of solid oral dosage forms can be customised, allowing for truly personalised medicine in a way that traditional pharmaceutical manufacturing would struggle to achieve. One of the many options for customisation involves dose titration, allowing for gradual weaning of a medication at dose intervals smaller than what is available commercially. In this study we demonstrate the high accuracy and precision of 3DP dose titration of caffeine, selected due to its global prevalence as a behavioural drug and well-known titration-dependent adverse reactions in humans. This was achieved using a simple filament base of polyvinyl alcohol, glycerol, and starch, utilising hot melt extrusion coupled with fused deposition modelling 3DP. Tablets containing 25 mg, 50 mg, and 100 mg doses of caffeine were successfully printed with drug content in the accepted range prescribed for conventional tablets (90 - 110%), and excellent precision whereby the weights of all doses showed a relative standard deviation of no more than 3%. Importantly, these results proved 3D printed tablets to be far superior to splitting a commercially available caffeine tablet. Additional assessment of filament and tablet samples were reviewed by differential scanning calorimetry, thermogravimetric analysis, HPLC, and scanning electron microscopy, showing no evidence of degradation of caffeine or the raw materials, with smooth and consistent filament extrusion. Upon dissolution, all tablets achieved greater than 70% release between 50 and 60 min, showing a predictable rapid release profile regardless of dose. The outcomes of this study highlight the benefits that dose titration with 3DP can offer, especially to more commonly prescribed medications that can have even more harmful withdrawal-induced adverse reactions.
Collapse
Affiliation(s)
- Liam Krueger
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Yuxue Cao
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Zheng Zheng
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jason Ward
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jared A Miles
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
13
|
Kulkarni VR, Chakka J, Alkadi F, Maniruzzaman M. Veering to a Continuous Platform of Fused Deposition Modeling Based 3D Printing for Pharmaceutical Dosage Forms: Understanding the Effect of Layer Orientation on Formulation Performance. Pharmaceutics 2023; 15:pharmaceutics15051324. [PMID: 37242565 DOI: 10.3390/pharmaceutics15051324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Three-dimensional (3D) printing of pharmaceuticals has been centered around the idea of personalized patient-based 'on-demand' medication. Fused deposition modeling (FDM)-based 3D printing processes provide the capability to create complex geometrical dosage forms. However, the current FDM-based processes are associated with printing lag time and manual interventions. The current study tried to resolve this issue by utilizing the dynamic z-axis to continuously print drug-loaded printlets. Fenofibrate (FNB) was formulated with hydroxypropyl methylcellulose (HPMC AS LG) into an amorphous solid dispersion using the hot-melt extrusion (HME) process. Thermal and solid-state analyses were used to confirm the amorphous state of the drug in both polymeric filaments and printlets. Printlets with a 25, 50, and 75% infill density were printed using the two printing systems, i.e., continuous, and conventional batch FDM printing methods. Differences between the two methods were observed in the breaking force required to break the printlets, and these differences reduced as the infill density went up. The effect on in vitro release was significant at lower infill densities but reduced at higher infill densities. The results obtained from this study can be used to understand the formulation and process control strategies when switching from conventional FDM to the continuous printing of 3D-printed dosage forms.
Collapse
Affiliation(s)
- Vineet R Kulkarni
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78705, USA
| | - Jaidev Chakka
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78705, USA
| | - Faez Alkadi
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78705, USA
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78705, USA
| |
Collapse
|
14
|
Xu T, Li H, Xia Y, Ding S, Yang Q, Yang G. Three-Dimensional-Printed Oral Films Based on LCD: Influence Factors of the Film Printability and Received Qualities. Pharmaceutics 2023; 15:pharmaceutics15030758. [PMID: 36986619 PMCID: PMC10059875 DOI: 10.3390/pharmaceutics15030758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
As an oral mucosal drug delivery system, oral films have been of wide concern in recent years because of their advantages such as rapid absorption, being easy to swallow and avoiding the first-pass effect common for mucoadhesive oral films. However, the currently utilized manufacturing approaches including solvent casting have many limitations, such as solvent residue and difficulties in drying, and are not suitable for personalized customization. To solve these problems, the present study utilizes liquid crystal display (LCD), a photopolymerization-based 3D printing technique, to fabricate mucoadhesive films for oral mucosal drug delivery. The designed printing formulation includes PEGDA as the printing resin, TPO as the photoinitiator, tartrazine as the photoabsorber, PEG 300 as the additive and HPMC as the bioadhesive material. The influence of printing formulation and printing parameters on the printing formability of the oral films were elucidated in depth, and the results suggested that PEG 300 in the formulation not only provided the necessary flexibility of the printed oral films, but also improved drug release rate due to its role as pore former in the produced films. The presence of HPMC could greatly improve the adhesiveness of the 3D-printed oral films, but excessive HPMC increased the viscosity of the printing resin solution, which could strongly hinder the photo-crosslinking reaction and reduce printability. Based on the optimized printing formulation and printing parameters, the bilayer oral films containing a backing layer and an adhesive layer were successfully printed with stable dimensions, adequate mechanical properties, strong adhesion ability, desirable drug release and efficient in vivo therapeutic efficacy. All these results indicated that an LCD-based 3D printing technique is a promising alternative to precisely fabricate oral films for personalized medicine.
Collapse
|
15
|
Uboldi M, Perrotta C, Moscheni C, Zecchini S, Napoli A, Castiglioni C, Gazzaniga A, Melocchi A, Zema L. Insights into the Safety and Versatility of 4D Printed Intravesical Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15030757. [PMID: 36986618 PMCID: PMC10057729 DOI: 10.3390/pharmaceutics15030757] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
This paper focuses on recent advancements in the development of 4D printed drug delivery systems (DDSs) for the intravesical administration of drugs. By coupling the effectiveness of local treatments with major compliance and long-lasting performance, they would represent a promising innovation for the current treatment of bladder pathologies. Being based on a shape-memory pharmaceutical-grade polyvinyl alcohol (PVA), these DDSs are manufactured in a bulky shape, can be programmed to take on a collapsed one suitable for insertion into a catheter and re-expand inside the target organ, following exposure to biological fluids at body temperature, while releasing their content. The biocompatibility of prototypes made of PVAs of different molecular weight, either uncoated or coated with Eudragit®-based formulations, was assessed by excluding relevant in vitro toxicity and inflammatory response using bladder cancer and human monocytic cell lines. Moreover, the feasibility of a novel configuration was preliminarily investigated, targeting the development of prototypes provided with inner reservoirs to be filled with different drug-containing formulations. Samples entailing two cavities, filled during the printing process, were successfully fabricated and showed, in simulated urine at body temperature, potential for controlled release, while maintaining the ability to recover about 70% of their original shape within 3 min.
Collapse
Affiliation(s)
- Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Cristiana Perrotta
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, 20157 Milano, Italy
| | - Claudia Moscheni
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, 20157 Milano, Italy
| | - Silvia Zecchini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, 20157 Milano, Italy
| | - Alessandra Napoli
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, 20157 Milano, Italy
| | - Chiara Castiglioni
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Andrea Gazzaniga
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
- Correspondence: ; Tel.: +39-02-50324654
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| |
Collapse
|
16
|
Hybrid Manufacturing of Oral Solid Dosage Forms via Overprinting of Injection-Molded Tablet Substrates. Pharmaceutics 2023; 15:pharmaceutics15020507. [PMID: 36839829 PMCID: PMC9965482 DOI: 10.3390/pharmaceutics15020507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Since 3D printing allows for patient-specific dosage forms, it has become a major focus in pharmaceutical research. However, it is difficult to scale up drug product manufacturing. Injection molding has been used in conjunction with hot-melt extrusion to mass produce drug products, but making tailored solid dosage forms with this technology is neither cost-effective nor simple. This study explored the use of a combination of fused filament fabrication and injection molding to create patient-specific solid dosage forms. A tablet fixation and location template was used to overprint directly on injection-molded tablet bases, and theophylline was combined with polycaprolactone and Kollidon® VA64 via hot-melt extrusion to produce the filament. Dynamic mechanical analysis was used to evaluate the brittleness of the filament, and differential scanning calorimetry was used to analyze the thermal results. The results showed that theophylline had a flow promoting effect on the polymer blend and that overprinted tablets were manufactured faster than 3D-printed tablets. Drug release studies also showed that overprinted tablets released faster than injection-molded tablets. This method demonstrates the potential of hybrid manufacturing for the pharmaceutical industry as a means of bridging the gap between personalized dosage forms and mass production.
Collapse
|
17
|
Investigation on the use of fused deposition modeling for the production of IR dosage forms containing Timapiprant. Int J Pharm X 2022; 5:100152. [PMID: 36624741 PMCID: PMC9823139 DOI: 10.1016/j.ijpx.2022.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022] Open
Abstract
The present work focused on evaluating the feasibility of fused deposition modeling (FDM) in the development of a dosage form containing Timapiprant (TMP), also known as CHF6532, which is a novel active molecule indicated in the potential treatment of eosinophilic asthma upon oral administration. The resulting product could be an alternative, with potential towards personalization, of immediate release (IR) tablets used in the clinical studies. Formulations based on different polymeric carriers were screened, leading to the identification of a polyvinyl alcohol-based one, which turned out acceptable for versatility in terms of active ingredient content, printability and dissolution performance (i.e. capability to meet the dissolution specification set, envisaging >80% of the drug dissolved within 30 min). Following an in-depth evaluation on the influence of TMP solid state and of the voids volume resulting from printing on dissolution, few prototypes with shapes especially devised for therapy customization were successfully printed and were compliant with the dissolution specification set.
Collapse
|
18
|
Novel Approach to Pharmaceutical 3D-Printing Omitting the Need for Filament-Investigation of Materials, Process, and Product Characteristics. Pharmaceutics 2022; 14:pharmaceutics14112488. [PMID: 36432679 PMCID: PMC9695885 DOI: 10.3390/pharmaceutics14112488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
The utilized 3D printhead employs an innovative hot-melt extrusion (HME) design approach being fed by drug-loaded polymer granules and making filament strands obsolete. Oscillatory rheology is a key tool for understanding the behavior of a polymer melt in extrusion processes. In this study, small amplitude shear oscillatory (SAOS) rheology was applied to investigate formulations of model antihypertensive drug Metoprolol Succinate (MSN) in two carrier polymers for pharmaceutical three-dimensional printing (3DP). For a standardized printing process, the feeding polymers viscosity results were correlated to their printability and a better understanding of the 3DP extrudability of a pharmaceutical formulation was developed. It was found that the printing temperature is of fundamental importance, although it is limited by process parameters and the decomposition of the active pharmaceutical ingredients (API). Material characterization including differential scanning calorimetry (DSC) and thermogravimetric analyses (TGA) of the formulations were performed to evaluate component miscibility and ensure thermal durability. To assure the development of a printing process eligible for approval, all print runs were investigated for uniformity of mass and uniformity of dosage in accordance with the European Pharmacopoeia (Ph. Eur.).
Collapse
|