1
|
Zamani MR, Hadzima M, Blažková K, Šubr V, Ormsby T, Celis-Gutierrez J, Malissen B, Kostka L, Etrych T, Šácha P, Konvalinka J. Polymer-based antibody mimetics (iBodies) target human PD-L1 and function as a potent immune checkpoint blocker. J Biol Chem 2024; 300:107325. [PMID: 38685532 PMCID: PMC11154707 DOI: 10.1016/j.jbc.2024.107325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Immune checkpoint blockade (ICB) using monoclonal antibodies against programmed cell death protein 1 (PD-1) or programmed death-ligand 1 (PD-L1) is the treatment of choice for cancer immunotherapy. However, low tissue permeability, immunogenicity, immune-related adverse effects, and high cost could be possibly improved using alternative approaches. On the other hand, synthetic low-molecular-weight (LMW) PD-1/PD-L1 blockers have failed to progress beyond in vitro studies, mostly due to low binding affinity or poor pharmacological characteristics resulting from their limited solubility and/or stability. Here, we report the development of polymer-based anti-human PD-L1 antibody mimetics (α-hPD-L1 iBodies) by attaching the macrocyclic peptide WL12 to a N-(2-hydroxypropyl)methacrylamide copolymer. We characterized the binding properties of iBodies using surface plasmon resonance, enzyme-linked immunosorbent assay, flow cytometry, confocal microscopy, and a cellular ICB model. We found that the α-hPD-L1 iBodies specifically target human PD-L1 (hPD-L1) and block the PD-1/PD-L1 interaction in vitro, comparable to the atezolizumab, durvalumab, and avelumab licensed monoclonal antibodies targeting PD-L1. Our findings suggest that iBodies can be used as experimental tools to target hPD-L1 and could serve as a platform to potentiate the therapeutic effect of hPD-L1-targeting small molecules by improving their affinity and pharmacokinetic properties.
Collapse
Affiliation(s)
- Mohammad Reza Zamani
- Faculty of Science, Department of Cell Biology, Charles University, Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Hadzima
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Department of Organic Chemistry, Charles University, Prague, Czech Republic
| | - Kristýna Blažková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimír Šubr
- Department of Biomedical polymers, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Tereza Ormsby
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Javier Celis-Gutierrez
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, INSERM, CNRS, Marseille, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, INSERM, CNRS, Marseille, France
| | - Libor Kostka
- Department of Biomedical polymers, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Etrych
- Department of Biomedical polymers, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Šácha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Department of Biochemistry, Charles University, Prague, Czech Republic.
| |
Collapse
|
2
|
Kovář M, Šubr V, Běhalová K, Studenovský M, Starenko D, Kovářová J, Procházková P, Etrych T, Kostka L. Chemosensitization of tumors via simultaneous delivery of STAT3 inhibitor and doxorubicin through HPMA copolymer-based nanotherapeutics with pH-sensitive activation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 56:102730. [PMID: 38158146 DOI: 10.1016/j.nano.2023.102730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/13/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
We synthesized three novel STAT3 inhibitors (S3iD1-S3iD3) possessing oxoheptanoic residue enabling linkage to HPMA copolymer carrier via a pH-sensitive hydrazone bond. HPMA copolymer conjugates bearing doxorubicin (Dox) and our STAT3 inhibitors were synthesized to evaluate the anticancer effect of Dox and STAT3 inhibitor co-delivery into tumors. S3iD1-3 and their copolymer-bound counterparts (P-S3iD1-P-S3iD3) showed considerable in vitro cytostatic activities in five mouse and human cancer cell lines with IC50 ~0.6-7.9 μM and 0.7-10.9 μM, respectively. S3iD2 and S3iD3 were confirmed to inhibit the STAT3 signaling pathway. The combination of HPMA copolymer-bound Dox (P-Dox) and P-S3iD3 at the dosage showing negligible toxicity demonstrated significant antitumor activity in B16F10 melanoma-bearing mice and completely cured 2 out of 15 mice. P-Dox alone had a significantly lower therapeutic activity with no completely cured mice. Thus, polymer conjugates bearing STAT3 inhibitors may be used for the chemosensitization of chemorefractory tumors.
Collapse
Affiliation(s)
- M Kovář
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - V Šubr
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic
| | - K Běhalová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - M Studenovský
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic
| | - D Starenko
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - J Kovářová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - P Procházková
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - T Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic
| | - L Kostka
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic.
| |
Collapse
|
3
|
Liu T, Guo C, Xu S, Hu G, Wang L. A Novel Strategy to Improve Tumor Targeting of Hydrophilic Drugs and Nanoparticles for Imaging Guided Synergetic Therapy. Adv Healthc Mater 2023; 12:e2300883. [PMID: 37437241 DOI: 10.1002/adhm.202300883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/12/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
The fast renal clearance of hydrophilic small molecular anticancer drugs and ultrasmall nanoparticles (NPs) results in the low utilization rate and certain side effects, thus improving the tumor targeting is highly desired but faces great challenges. A novel and general β-cyclodextrin (CD) aggregation-induced assembly strategy to fabricate doxorubicin (DOX) and CD-coated NPs (such as Au) co-encapsulated pH-responsive nanocomposites (NCs) is proposed. By adding DOX×HCl and reducing pH in a reversed microemulsion system, hydrophilic CD-coated AuNPs rapidly assemble into large NCs. Then in situ polymerization of dopamine and sequentially coordinating with Cu2+ on the surface of NCs provide extra weak acid responsiveness, chemodynamic therapy (CDT), and improved biocompatibility as well as stability. The subsequent tumor microenvironment responsive dissociation notably improves their passive tumor targeting, bioavailability, imaging, and therapeutic capabilities, as well as facilitates their internalization by tumor cells and metabolic clearance, thereby reducing side effects. The combination of polymerized dopamine and assembled AuNPs reinforces photothermal capability, thus further boosting CDT through thermally amplifying Cu-catalyzed Fenton-like reaction. Both in vitro and in vivo studies confirm the desirable outcomes of these NCs as photoacoustic imaging guided trimodal (thermally enhanced CDT, photothermal therapy, and chemotherapy) synergistic tumor treatment agents with minimal systemic toxicity.
Collapse
Affiliation(s)
- Taoxia Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chang Guo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Gaofei Hu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
4
|
Liu H, Dai Y, Li J, Liu P, Zhou W, Yu DG, Ge R. Fast and convenient delivery of fluidextracts liquorice through electrospun core-shell nanohybrids. Front Bioeng Biotechnol 2023; 11:1172133. [PMID: 37091339 PMCID: PMC10117974 DOI: 10.3389/fbioe.2023.1172133] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Introduction: As an interdisciplinary field, drug delivery relies on the developments of modern science and technology. Correspondingly, how to upgrade the traditional dosage forms for a more efficacious, safer, and convenient drug delivery poses a continuous challenge to researchers. Methods, results and discussion: In this study, a proof-of-concept demonstration was conducted to convert a popular traditional liquid dosage form (a commercial oral compound solution prepared from an intermediate licorice fluidextract) into a solid dosage form. The oral commercial solution was successfully encapsulated into the core-shell nanohybrids, and the ethanol in the oral solution was removed. The SEM and TEM evaluations showed that the prepared nanofibers had linear morphologies without any discerned spindles or beads and an obvious core-shell nanostructure. The FTIR and XRD results verified that the active ingredients in the commercial solution were compatible with the polymeric matrices and were presented in the core section in an amorphous state. Three different types of methods were developed, and the fast dissolution of the electrospun core-shell nanofibers was verified. Conclusion: Coaxial electrospinning can act as a nano pharmaceutical technique to upgrade the traditional oral solution into fast-dissolving solid drug delivery films to retain the advantages of the liquid dosage forms and the solid dosage forms.
Collapse
Affiliation(s)
- Hang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yelin Dai
- Wenqi Middle School, Shanghai, China
- Qingpu Campus, High School Affiliated to Fudan University, Shanghai, China
| | - Jia Li
- Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
- Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenhui Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Ruiliang Ge
- Department of Outpatient, The Third Affiliated Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|