1
|
Shi C, Chen T, Li Y, Li W, Shen Y, Cai K, Wang M, Chen Y. Encapsulation of individual mammalian cells as a cell-based drug delivery carrier for lung cancer treatment. J Control Release 2024; 378:209-220. [PMID: 39662681 DOI: 10.1016/j.jconrel.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Cell-based delivery holds great promise for advancing cell therapy, but it often faces challenges such as low cell survival rates and immunological rejection during cell injection and circulation. In this study, we develop an alternative approach aimed at engineering cell membranes to produce encapsulated individual mammalian (EIM) cells. The encapsulation shell was formed by catalyzing the reaction of H2O2 with hyaluronic acid-dopamine (HA-DA) on the cell surface using horseradish peroxidase (HRP) enzymes. This protective shell not only protects live mammalian cells from physical stress but also from biological assaults. The individual cell encapsulation system enables the loading of cells with chemotherapy drugs, enhancing their targeting ability towards tumor sites and resulting in over 5.1-fold cell enrichment at metastatic tumors, thereby improving tumor-killing efficacy and reducing metastasis. Overall, the individual cell encapsulation system demonstrates potential for targeted drug delivery to the lungs in the treatment of lung cancer by reducing side effects and enhancing treatment outcomes.
Collapse
Affiliation(s)
- Chaochen Shi
- Medical 3D Printing Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, PR China
| | - Tao Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China
| | - Yingying Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, PR China
| | - Wenshuai Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China
| | - Yuan Shen
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, PR China
| | - Kehan Cai
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China
| | - Ming Wang
- Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China
| | - Yazhou Chen
- Medical 3D Printing Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, PR China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, PR China.
| |
Collapse
|
2
|
Wang Y, Li Y, Lu Y, Li J. Biomimetic Nanoparticles for the Diagnosis and Therapy of Atherosclerosis. CHEM REC 2024; 24:e202400087. [PMID: 39148157 DOI: 10.1002/tcr.202400087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/23/2024] [Indexed: 08/17/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammation of blood vessels, which often has no obvious symptoms in the early stage of the disease, but when atherosclerotic plaques are formed, they often cause lumen blockage, and even plaque rupture leads to thrombosis, that is the essential factor of cardiovascular events, for example myocardial infarction, cerebral infarction, and renal atrophy. Therefore, it is considerably significant for the early recognition and precise therapy of plaque. Biomimetic nanoparticles (BNPs), especially those coated with cell membranes, can retain the biological function of cell membranes or cells, which has led to extensive research and application in the diagnosis and treatment of AS in recent years. In this review, we summarized the roles of various key cells in AS progression, the construction of biomimetic nanoparticles based on these key cells as well as their applications in AS diagnosis and therapy. Furthermore, we give a challenge and prospect of biomimetic nanoparticles in AS, hoping to elevate their application quality and the possibility of clinical translation.
Collapse
Affiliation(s)
- Yan Wang
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yize Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yuqing Lu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| |
Collapse
|
3
|
King SM, Ortiz I, Sarna NS, Wang W, Lopez-Cavestany M, Zhang Z. Retention of E-selectin functionalized liposome fanny packs on Jurkat cells following invasion through collagen. J Immunol Methods 2024; 531:113700. [PMID: 38843951 DOI: 10.1016/j.jim.2024.113700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Circulating immune cells are an appealing candidate to serve as carriers of therapeutic cargo via nanoparticles conjugated to their surface, for several reasons: these cells are highly migratory and can squeeze through small pores of diameter smaller than their resting size; they are easily accessible in the peripheral blood via minimally invasive IV injection of particles, or can be harvested, processed ex vivo, and reintroduced to the body; they are adept at traveling through the circulation with minimal destruction and thus have access to various tissue beds of the body; and immune cells have built-in signal transduction machinery which allows them to actively engage in chemotaxis and home to regions of the tissue containing tumors, invading microorganisms, or injuries in need of wound healing. In this study, we sought to examine and quantify the degree to which nanoscale liposomes, functionalized with E-selectin adhesion receptor, could bind to a model T cell line and remain on the surface of the cells as they migrate through collagen gels of varying density in a transwell cell migration chamber. It is demonstrated that physiological levels of fluid shear stress are necessary to achieve optimal binding of the E-selectin liposomes to the cell surface as expected, and that CD3/CD28 antibody activation of the T cells was not necessary for effective liposome binding. Nanoscale liposomes were successfully conveyed by the migrating cells across a layer of rat tail type 1 collagen gel ranging in composition from 1 to 3 mg/mL. The relative fraction of liposomes carried through the collagen decreased at higher collagen density, likely due to the expected decrease in average pore size, and increased fiber content in the gels. Taken together, these results support the idea that T cells could be an effective cellular carrier of therapeutic molecules either attached to the surface of nanoscale liposomes or encapsulated within their interior.
Collapse
Affiliation(s)
- Simon M King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Franklin High School, Franklin, TN, USA
| | - Ismael Ortiz
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Nicole S Sarna
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Zhenjiang Zhang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
Ning P, Du F, Wang H, Gong X, Xia Y, Zhang X, Deng H, Zhang R, Wang Z. Genetically engineered macrophages as living cell drug carriers for targeted cancer therapy. J Control Release 2024; 367:697-707. [PMID: 38331001 DOI: 10.1016/j.jconrel.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Precise targeting is a major prerequisite for effective cancer therapy because it ensures a sufficient therapeutic dosage in tumors while minimizing off-target side effects. Herein, we report a live-macrophage-based therapeutic system for high-efficiency tumor therapy. As a proof of concept, anti-human epidermal growth factor receptor-2 (HER2) affibodies were genetically engineered onto the extracellular membrane of macrophages (AE-Mφ), which further internalized doxorubicin (DOX)-loaded poly(lactic-co-glycolic acid) nanoparticles (NPs) to produce a macrophage-based therapeutic system armed with anti-HER2 affibodies. NPs(DOX)@AE-Mφ were able to target HER2+ cancer cells and specifically elicit affibody-mediated cell therapy. Most importantly, the superior HER2 + -targeting capability of NPs(DOX)@AE-Mφ greatly guaranteed high accumulation at the tumor site for improved chemotherapy, which acted synergistically with cell therapy to significantly enhance anti-tumor efficacy. This study suggests that NPs(DOX)@AE-Mφ could be utilized as an innovative 'living targeted drug' platform for combining both macrophage-mediated cell therapy and targeted chemotherapy for the individualized treatment of solid tumors.
Collapse
Affiliation(s)
- Pengbo Ning
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China.
| | - Fuyu Du
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Haotian Wang
- Department of radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110801, China
| | - Xiaocheng Gong
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Yuqiong Xia
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Xianghan Zhang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Hongzhang Deng
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Ruili Zhang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China.
| | - Zhongliang Wang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China.
| |
Collapse
|
5
|
Petrovic SM, Barbinta-Patrascu ME. Organic and Biogenic Nanocarriers as Bio-Friendly Systems for Bioactive Compounds' Delivery: State-of-the Art and Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7550. [PMID: 38138692 PMCID: PMC10744464 DOI: 10.3390/ma16247550] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
"Green" strategies to build up novel organic nanocarriers with bioperformance are modern trends in nanotechnology. In this way, the valorization of bio-wastes and the use of living systems to develop multifunctional organic and biogenic nanocarriers (OBNs) have revolutionized the nanotechnological and biomedical fields. This paper is a comprehensive review related to OBNs for bioactives' delivery, providing an overview of the reports on the past two decades. In the first part, several classes of bioactive compounds and their therapeutic role are briefly presented. A broad section is dedicated to the main categories of organic and biogenic nanocarriers. The major challenges regarding the eco-design and the fate of OBNs are suggested to overcome some toxicity-related drawbacks. Future directions and opportunities, and finding "green" solutions for solving the problems related to nanocarriers, are outlined in the final of this paper. We believe that through this review, we will capture the attention of the readers and will open new perspectives for new solutions/ideas for the discovery of more efficient and "green" ways in developing novel bioperformant nanocarriers for transporting bioactive agents.
Collapse
Affiliation(s)
- Sanja M. Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 1600 Leskovac, Serbia;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Măgurele, Romania
| |
Collapse
|