1
|
Velty A, Corma A. Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO 2 to chemicals and fuels. Chem Soc Rev 2023; 52:1773-1946. [PMID: 36786224 DOI: 10.1039/d2cs00456a] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
For many years, capturing, storing or sequestering CO2 from concentrated emission sources or from air has been a powerful technique for reducing atmospheric CO2. Moreover, the use of CO2 as a C1 building block to mitigate CO2 emissions and, at the same time, produce sustainable chemicals or fuels is a challenging and promising alternative to meet global demand for chemicals and energy. Hence, the chemical incorporation and conversion of CO2 into valuable chemicals has received much attention in the last decade, since CO2 is an abundant, inexpensive, nontoxic, nonflammable, and renewable one-carbon building block. Nevertheless, CO2 is the most oxidized form of carbon, thermodynamically the most stable form and kinetically inert. Consequently, the chemical conversion of CO2 requires highly reactive, rich-energy substrates, highly stable products to be formed or harder reaction conditions. The use of catalysts constitutes an important tool in the development of sustainable chemistry, since catalysts increase the rate of the reaction without modifying the overall standard Gibbs energy in the reaction. Therefore, special attention has been paid to catalysis, and in particular to heterogeneous catalysis because of its environmentally friendly and recyclable nature attributed to simple separation and recovery, as well as its applicability to continuous reactor operations. Focusing on heterogeneous catalysts, we decided to center on zeolite and ordered mesoporous materials due to their high thermal and chemical stability and versatility, which make them good candidates for the design and development of catalysts for CO2 conversion. In the present review, we analyze the state of the art in the last 25 years and the potential opportunities for using zeolite and OMS (ordered mesoporous silica) based materials to convert CO2 into valuable chemicals essential for our daily lives and fuels, and to pave the way towards reducing carbon footprint. In this review, we have compiled, to the best of our knowledge, the different reactions involving catalysts based on zeolites and OMS to convert CO2 into cyclic and dialkyl carbonates, acyclic carbamates, 2-oxazolidones, carboxylic acids, methanol, dimethylether, methane, higher alcohols (C2+OH), C2+ (gasoline, olefins and aromatics), syngas (RWGS, dry reforming of methane and alcohols), olefins (oxidative dehydrogenation of alkanes) and simple fuels by photoreduction. The use of advanced zeolite and OMS-based materials, and the development of new processes and technologies should provide a new impulse to boost the conversion of CO2 into chemicals and fuels.
Collapse
Affiliation(s)
- Alexandra Velty
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain.
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain.
| |
Collapse
|
2
|
Low Temperature Catalytic Oxidation of Ethanol Using Ozone over Manganese Oxide-Based Catalysts in Powdered and Monolithic Forms. Catalysts 2022. [DOI: 10.3390/catal12020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Catalytic oxidation of low concentrations of ethanol was investigated in dry and humid air streams at low temperature (60 °C) over manganese oxide-based catalysts supported on a meso–macrostructured TiO2 using ozone as the oxidant. Ethanol was selected as a representative model VOC present in indoor air, and its concentration was fixed to 10 ppm. For that purpose, a series of Mn/TiO2 powder and monolithic catalysts was prepared, some doped with 0.5 wt% Pd. Whatever the catalyst, the presence of water vapor in the gas phase had a beneficial effect on the conversion of ethanol and ozone. The Pd–Mn/TiO2 catalyst containing 0.5 wt% Pd and 5 wt% Mn exhibited superior oxidation efficiency to the Mn/TiO2 counterparts by increasing ozone decomposition (77%) while simultaneously increasing the selectivity to CO2 (85%). The selectivity to CO2 approached nearly 100% by increasing the amount of catalyst from 20 to 80 mg. In a further step, alumina wash-coated cordierite honeycomb monoliths were coated with the 0.5Pd–5Mn/TiO2 catalyst. Full conversion of ethanol to CO2 without residual O3 emitted (less than 10 ppb) could be attained, thereby demonstrating that the proposed Pd–Mn/TiO2 monolithic catalyst fulfills the specifications required for onboard systems.
Collapse
|
3
|
Yang GQ, He YJ, Song YH, Wang J, Liu ZT, Liu ZW. Oxidative Dehydrogenation of Propane with Carbon Dioxide Catalyzed by Zn xZr 1–xO 2–x Solid Solutions. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guo-Qing Yang
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Ya-Jiao He
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Yong-Hong Song
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Jian Wang
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Zhao-Tie Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
4
|
Leng Y, Zhang Z, Chen H, Du S, Liu J, Nie S, Dong Y, Zhang P, Dai S. Overcoming the phase separation within high-entropy metal carbide by poly(ionic liquid)s. Chem Commun (Camb) 2021; 57:3676-3679. [PMID: 33725083 DOI: 10.1039/d1cc00497b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-entropy crystalline materials are attracting more attention. In principle, high-entropy metal carbides (HMCs) that contain five or more metal ions, possess more negative free energy value during catalysis. But its preparation is challenging because of the immiscibility of multi metal cations in a single carbide solid solution. Here, a rational strategy for preparing HMC is proposed via a coordination-assisted crystallization process in the presence of Br-based poly(ionic liquids). Through this method, Mo0.2W0.2V0.2Cr0.2Nb0.2C nanoparticles, with a single cubic phase structure, incorporated on porous carbon, are obtained (HMC@NC). By combination of well dispersed small particle size (∼4 nm), high surface area (∼270 m2 g-1), and high-entropy phase, HMC@NC can function as a promising catalyst for the dehydrogenation of ethylbenzene. Unexpected activity (EB conv.: 73%) and thermal stability (>100 h on steam) at 450 °C are observed. Such a facile synthetic strategy may inspire the fabrication of other types of HMCs for more specific tasks.
Collapse
Affiliation(s)
- Yan Leng
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Tao L, Choksi TS, Liu W, Pérez-Ramírez J. Synthesizing High-Volume Chemicals from CO 2 without Direct H 2 Input. CHEMSUSCHEM 2020; 13:6066-6089. [PMID: 32946662 DOI: 10.1002/cssc.202001604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Decarbonizing the chemical industry will eventually entail using CO2 as a feedstock for chemical synthesis. However, many chemical syntheses involve CO2 reduction using inputs such as renewable hydrogen. In this review, chemical processes are discussed that use CO2 as an oxidant for upgrading hydrocarbon feedstocks. The captured CO2 is inherently reduced by the hydrocarbon co-reactants without consuming molecular hydrogen or renewable electricity. This CO2 utilization approach can be potentially applied to synthesize eight emission-intensive molecules, including olefins and epoxides. Catalytic systems and reactor concepts are discussed that can overcome practical challenges, such as thermodynamic limitations, over-oxidation, coking, and heat management. Under the best-case scenario, these hydrogen-free CO2 reduction processes have a combined CO2 abatement potential of approximately 1 gigatons per year and avoid the consumption of 1.24 PWh renewable electricity, based on current market demand and supply.
Collapse
Affiliation(s)
- Longgang Tao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Tej S Choksi
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Wen Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Javier Pérez-Ramírez
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg, 1, 8093, Zurich, Switzerland
- Department of Chemical, Biomolecular Engineering National University Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
6
|
Song K, Wang S, Sun Q, Xu D. Study of oxidative dehydrogenation of ethylbenzene with CO2 on supported CeO2-Fe2O3 binary oxides. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
7
|
Gao W, Liang S, Wang R, Jiang Q, Zhang Y, Zheng Q, Xie B, Toe CY, Zhu X, Wang J, Huang L, Gao Y, Wang Z, Jo C, Wang Q, Wang L, Liu Y, Louis B, Scott J, Roger AC, Amal R, He H, Park SE. Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem Soc Rev 2020; 49:8584-8686. [DOI: 10.1039/d0cs00025f] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review covers the sustainable development of advanced improvements in CO2 capture and utilization.
Collapse
|
8
|
Chen S, Xu Z, Tan D, Pan D, Cui X, Qiao Y, Li R. Oxidative dehydrogenation of ethylbenzene to styrene with CO2over Al‐MCM‐41‐supported vanadia catalysts. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shuwei Chen
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 China
| | - Zheqi Xu
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 China
| | - Dongchen Tan
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 China
| | - Dahai Pan
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 China
| | - Xingyu Cui
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 China
| | - Yan Qiao
- State Key Laboratory of Coal ConversionInstitute of Coal Chemistry, Chinese Academy of Sciences Taiyuan 030001 China
| | - Ruifeng Li
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 China
| |
Collapse
|
9
|
Wang H, Cao FX, Song YH, Yang GQ, Ge HQ, Liu ZT, Qu YQ, Liu ZW. Two-step hydrothermally synthesized Ce1-xZrxO2 for oxidative dehydrogenation of ethylbenzene with carbon dioxide. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
|
11
|
Hong Z, Xiong C, Zhao G, Zhu Z. Side-chain alkylation of toluene with methanol to produce styrene: an overview. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01581g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Styrene is a key building-block chemical for the production of polymers with significant application value.
Collapse
Affiliation(s)
- Zhe Hong
- School of Chemical Science and Engineering
- TongJi University
- Shanghai
- PR China
| | | | - Guoqing Zhao
- School of Chemical Science and Engineering
- TongJi University
- Shanghai
- PR China
| | - Zhirong Zhu
- School of Chemical Science and Engineering
- TongJi University
- Shanghai
- PR China
| |
Collapse
|
12
|
Carbon dioxide assisted toluene side-chain alkylation with methanol over Cs-X zeolite catalyst. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|