1
|
Sinopoli A, Liu Z, Abotaleb A, Alkhateeb A, Gladich I. Addressing the Effectiveness and Molecular Mechanism of the Catalytic CO 2 Hydration in Aqueous Solutions by Nickel Nanoparticles. ACS OMEGA 2024; 9:771-780. [PMID: 38222595 PMCID: PMC10785337 DOI: 10.1021/acsomega.3c06676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024]
Abstract
Hydration of carbon dioxide in water solution is the rate limiting step for the CO2 mineralization process, a process which is at the base of many carbon capture and utilization (CCU) technologies aiming to convert carbon dioxide to added-value products and mitigate climate change. Here, we present a combined experimental and computational study to clarify the effectiveness and molecular mechanism by which nickel nanoparticles, NiNPs, may enhance CO2 hydration in aqueous solutions. Contrary to previous literature, our kinetic experiments recording changes of pHs, conductivity, and dissolved carbon dioxide in solution reveal a minimal effect of the NiNPs in catalyzing CO2 hydration. Our atomistic simulations indicate that the Ni metal surface can coordinate only a limited number of water molecules, leaving uncoordinated metal sites for the binding of carbon dioxide or other cations in solution. This deactivates the catalyst and limits the continuous re-formation of a hydroxyl-decorated surface, which was a key chemical step in the previously suggested Ni-catalyzed hydration mechanism of carbon dioxide in aqueous solutions. At our experimental conditions, which expand the investigation of NiNP applicability toward a wider range of scenarios for CCU, NiNPs show a limited catalytic effect on the rate of CO2 hydration. Our study also highlights the importance of the solvation regime: while Ni surfaces may accelerate carbon dioxide hydration in water restricted environments, it may not be the case in fully hydrated conditions.
Collapse
Affiliation(s)
- Alessandro Sinopoli
- Qatar
Environment and Energy Research Institute, Hamad Bin Khalifa University, P. O. Box 34410, Doha, Qatar
| | - Ziao Liu
- Department
of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ahmed Abotaleb
- Qatar
Environment and Energy Research Institute, Hamad Bin Khalifa University, P. O. Box 34410, Doha, Qatar
| | - Alaa Alkhateeb
- Qatar
Environment and Energy Research Institute, Hamad Bin Khalifa University, P. O. Box 34410, Doha, Qatar
| | - Ivan Gladich
- Qatar
Environment and Energy Research Institute, Hamad Bin Khalifa University, P. O. Box 34410, Doha, Qatar
| |
Collapse
|
2
|
Kumar S, Biswas S, Deshpande PA. Computational analysis of the effect of Gly100Ala mutation on the thermostability of SazCA. J Biomol Struct Dyn 2023; 41:12363-12371. [PMID: 36744540 DOI: 10.1080/07391102.2023.2175259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/02/2023] [Indexed: 02/07/2023]
Abstract
Maintaining the protein stability upon mutation is a challenging task in protein engineering. In the present computational study, we induced a single point Gly100Ala mutation in SazCA and examined the factors governing the stability and flexibility of the mutated form, and compared it to that of the wildtype using molecular dynamics simulations. We observed higher structural stability and lesser residual mobility in the mutated SazCA. Improved H-bonding due to Gly100Ala was observed. Ala100 was responsible for the increased helical contents in the mutated SazCA while Gly100 compromised the secondary structure contents in the wildtype. A strong network of salt bridges and high local ordering of the solvent molecules at the protein surface contributed to the enhanced stability of the mutated protein. Our simulations conclusively highlight Gly100Ala mutation as a step towards designing a more robust and thermostable SazCA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shashi Kumar
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Soumya Biswas
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Parag A Deshpande
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
3
|
Li N, Wang Z, Wang J. Biomimetic hydroxypropyl-β-cyclodextrin (Hβ-CD) / polyamide (PA) membranes for CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Redesigning Robust Biocatalysts by Engineering Enzyme Microenvironment and Enzyme Immobilization. Catal Letters 2022. [DOI: 10.1007/s10562-022-04137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
de Oliveira Maciel A, Christakopoulos P, Rova U, Antonopoulou I. Carbonic anhydrase to boost CO 2 sequestration: Improving carbon capture utilization and storage (CCUS). CHEMOSPHERE 2022; 299:134419. [PMID: 35364080 DOI: 10.1016/j.chemosphere.2022.134419] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
CO2 Capture Utilization and Storage (CCUS) is a fundamental strategy to mitigate climate change, and carbon sequestration, through absorption, can be one of the solutions to achieving this goal. In nature, carbonic anhydrase (CA) catalyzes the CO2 hydration to bicarbonates. Targeting the development of novel biotechnological routes which can compete with traditional CO2 absorption methods, CA utilization has presented a potential to expand as a promising catalyst for CCUS applications. Driven by this feature, the search for novel CAs as biocatalysts and the utilization of enzyme improvement techniques, such as protein engineering and immobilization methods, has resulted in suitable variants able to catalyze CO2 absorption at relevant industrial conditions. Limitations related to enzyme recovery and recyclability are still a concern in the field, affecting cost efficiency. Under different absorption approaches, CA enhances both kinetics and CO2 absorption yields, besides reduced energy consumption. However, efforts directed to process optimization and demonstrative plants are still limited. A recent topic with great potential for development is the CA utilization in accelerated weathering, where industrial residues could be re-purposed towards becoming carbon sequestrating agents. Furthermore, research of new solvents has identified potential candidates for integration with CA in CO2 capture, and through techno-economic assessments, CA can be a path to increase the competitiveness of alternative CO2 absorption systems, offering lower environmental costs. This review provides a favorable scenario combining the enzyme and CO2 capture, with possibilities in reaching an industrial-like stage in the future.
Collapse
Affiliation(s)
- Ayanne de Oliveira Maciel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Io Antonopoulou
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden.
| |
Collapse
|
6
|
Sargeant E, Rodríguez P. Electrochemical conversion of CO
2
in non‐conventional electrolytes: Recent achievements and future challenges. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
7
|
|
8
|
Wahyu Effendi SS, Tan SI, Ting WW, Ng IS. Enhanced recombinant Sulfurihydrogenibium yellowstonense carbonic anhydrase activity and thermostability by chaperone GroELS for carbon dioxide biomineralization. CHEMOSPHERE 2021; 271:128461. [PMID: 33131750 DOI: 10.1016/j.chemosphere.2020.128461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Biological carbon fixation is a feasible strategy to reduce atmospheric carbon dioxide levels (CO2). In this platform, carbonic anhydrase (CA) enzyme is employed to accelerate the sequestration of CO2. The present work explored the effect of chaperone GroELS and TrxA-tag on improving soluble expression of the recombinant Sulfurihydrogenibium yellowstonense CA which activity and biomineralization capability were taken into consideration. At first, the expression of GroELS using the inducible T7 promoter and constitutive J23100 promoter were investigated. The results indicated that 1.4 folds increment of soluble protein and 100% of CA activity enhancement were achieved with GroELS co-expression driven by J23100 promoter. Furthermore, the involvement of TrxA fusion tag displayed a significant enhancement of soluble protein production which was about 2.67 times higher than that of original SyCA. Besides, co-expression with GroELS intensified the thermostability of SyCA at 60 °C owing to changes in the structural conformation of the protein, which was proved by an in vitro assay. The SyCA was further entrapped and immobilized into polyacrylamide gel (i.e., PAGE-SyCA). The biomineralization capability of the PAGE-SyCA and whole-cell (WC) was compared in a two-column system. After 5 cycles of reuse, PAGE-SyCA maintained 29.8% activity and formed 774 mg of CaCO3 solids in the B::JG strain. This study presents the recombinant engineering strategies to improve SyCA productivity, activity, thermostability, and effective carbon dioxide conversion.
Collapse
Affiliation(s)
- Sefli Sri Wahyu Effendi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Shih-I Tan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Wan-Wen Ting
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
| |
Collapse
|
9
|
Valluri S, Kawatra SK. Simultaneous removal of CO 2, NO x and SO x using single stage absorption column. J Environ Sci (China) 2021; 103:279-287. [PMID: 33743909 DOI: 10.1016/j.jes.2020.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Capturing flue gases often require multiple stages of scrubbing, increasing the capital and operating costs. So far, no attempt has been made to study the absorption characteristics of all the three gases (NO, SO2 and CO2) in a single stage absorption unit at alkaline pH conditions. We have attempted to capture all the three gases with a single wet scrubbing column. The absorption of all three gases with sodium carbonate solution promoted with oxidizers was investigated in a tall absorption column. The absorbance was found to be 100% for CO2, 30% for NO and 95% for SO2 respectively. The capture efficiency of sodium carbonate solution was increased by 40% for CO2 loading, with the addition of oxidizer. Absorption kinetics and reaction pathways of all the three gases were discussed individually in detail.
Collapse
Affiliation(s)
- Sriram Valluri
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49930, USA.
| | - S Komar Kawatra
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49930, USA
| |
Collapse
|
10
|
|
11
|
Jia W, Song S, Li C, Wu X. Predictions on CH4 recovery factors using the CO2 replacement method to develop natural gas hydrate resources. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
|
13
|
Du M, Chen H, Ye J, Zhang S, Chen J, Wang L. One-pot synthesis of efficient carbonic anhydrase-zeolitic imidazolate framework-8 composite for enhancing CO2 absorption. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Biocatalytic CO 2 Absorption and Structural Studies of Carbonic Anhydrase under Industrially-Relevant Conditions. Int J Mol Sci 2020; 21:ijms21082918. [PMID: 32331206 PMCID: PMC7215295 DOI: 10.3390/ijms21082918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 12/31/2022] Open
Abstract
The unprecedently high CO2 levels in the atmosphere evoke the urgent need for development of technologies for mitigation of its emissions. Among the alternatives, the biocatalytic route has been claimed as one of the most promising. In the present work, the carbonic anhydrase from bovine erythrocytes (BCA) was employed as a model enzyme for structural studies in an aqueous phase at alkaline pH, which is typical of large-scale absorption processes under operation. Circular dichroism (CD) analysis revealed a high enzymatic stability at pH 10 with a prominent decrease of the melting temperature above this value. The CO2 absorption capacity of the aqueous solutions were assessed by online monitoring of pressure decay in a stainless-steel cell, which indicated a better performance at pH 10 with a kinetic rate increase of up to 43%, as compared to non-biocatalytic conditions. Even low enzyme concentrations (0.2 mg g-1) proved to be sufficient to improve the overall CO2 capture process performance. The enzyme-enhanced approach of CO2 capture presents a high potential and should be further studied.
Collapse
|
15
|
Engineering of Thermovibrio ammonificans carbonic anhydrase mutants with increased thermostability. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Bakonyi P, Peter J, Koter S, Mateos R, Kumar G, Koók L, Rózsenberszki T, Pientka Z, Kujawski W, Kim SH, Nemestóthy N, Bélafi-Bakó K, Pant D. Possibilities for the biologically-assisted utilization of CO2-rich gaseous waste streams generated during membrane technological separation of biohydrogen. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Jun SH, Yang J, Jeon H, Kim HS, Pack SP, Jin E, Kim J. Stabilized and Immobilized Carbonic Anhydrase on Electrospun Nanofibers for Enzymatic CO 2 Conversion and Utilization in Expedited Microalgal Growth. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1223-1231. [PMID: 31899628 DOI: 10.1021/acs.est.9b05284] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbonic anhydrases convert CO2 to bicarbonate at a high turnover rate up to 106 s-1, but their actual applications in CO2 conversion processes are hampered by their poor stability. This study reports highly loaded and stabilized bovine carbonic anhydrase (bCA) upon being immobilized onto electrospun polymer nanofibers in the form of enzyme precipitate coating (EPC). The EPC protocol, consisting of enzyme covalent attachment, precipitation, and cross-linking, maintained 65.3% of initial activity even after being incubated in aqueous solution at room temperature under shaking at 200 rpm for 868 days. EPC also showed strong resistance to the treatment of the metal chelation agent, ethylenediaminetetraacetic acid, and molecular dynamic simulation was carried out to elucidate the prevention of metal leaching from the active site of bCA upon being cross-linked in the form of EPC. Highly stable EPC with high bCA loading was employed for the conversion of bubbling CO2 to bicarbonate, and the bicarbonate solution was utilized as a carbon source for expedited microalgae growth in a separate bioreactor. The addition of EPC in the bubbling CO2 reactor resulted in 134 and 231% accelerated microalgae growths compared to the controls with and without 25 mM sodium bicarbonate, respectively. EPC with high enzyme loading and unprecedentedly successful stabilization of enzyme stability has a great potential to be used for the development of various enzyme-mediated CO2 conversion and utilization technologies.
Collapse
Affiliation(s)
- Seung-Hyun Jun
- Department of Chemical and Biological Engineering , Korea University , Seoul 02841 , Republic of Korea
| | - Jusang Yang
- Department of Chemical and Biological Engineering , Korea University , Seoul 02841 , Republic of Korea
| | - Hancheol Jeon
- Department of Genetic Resources Research , National Marine Biodiversity Institute of Korea , Seocheon 33662 , Republic of Korea
| | - Han Sol Kim
- Department of Chemical and Biological Engineering , Korea University , Seoul 02841 , Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics , Korea University , Sejong 30019 , Republic of Korea
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences , Hanyang University , Seoul 04763 , Republic of Korea
| | - Jungbae Kim
- Department of Chemical and Biological Engineering , Korea University , Seoul 02841 , Republic of Korea
| |
Collapse
|
18
|
Park D, Lee MS. Kinetic study of catalytic CO 2 hydration by metal-substituted biomimetic carbonic anhydrase model complexes. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190407. [PMID: 31598240 PMCID: PMC6731748 DOI: 10.1098/rsos.190407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/01/2019] [Indexed: 05/20/2023]
Abstract
The rapid rise of the CO2 level in the atmosphere has spurred the development of CO2 capture methods such as the use of biomimetic complexes that mimic carbonic anhydrase. In this study, model complexes with tris(2-pyridylmethyl)amine (TPA) were synthesized using various transition metals (Zn2+, Cu2+ and Ni2+) to control the intrinsic proton-donating ability. The pKa of the water coordinated to the metal, which indicates its proton-donating ability, was determined by potentiometric pH titration and found to increase in the order [(TPA)Cu(OH2)]2+ < [(TPA)Ni(OH2)]2+ < [(TPA)Zn(OH2)]2+. The effect of pKa on the CO2 hydration rate was investigated by stopped-flow spectrophotometry. Because the water ligand in [(TPA)Zn(OH2)]2+ had the highest pKa, it would be more difficult to deprotonate it than those coordinated to Cu2+ and Ni2+. It was, therefore, expected that the complex would have the slowest rate for the reaction of the deprotonated water with CO2 to form bicarbonate. However, it was confirmed that [(TPA)Zn(OH2)]2+ had the fastest CO2 hydration rate because the substitution of bicarbonate with water (bicarbonate release) occurred easily.
Collapse
Affiliation(s)
| | - Man Sig Lee
- Author for correspondence: Man Sig Lee e-mail:
| |
Collapse
|
19
|
Biomimetic Approach to CO 2 Reduction. Bioinorg Chem Appl 2018; 2018:2379141. [PMID: 30154831 PMCID: PMC6093055 DOI: 10.1155/2018/2379141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 01/14/2023] Open
Abstract
The development of artificial photosynthetic technologies able to produce solar-fuels from CO2 reduction is a fundamental task that requires the employment of specific catalysts being accomplished. Besides, effective catalysts are also demanded to capture atmospheric CO2, mitigating the effects of its constantly increasing emission. Biomimetic transition metal complexes are considered ideal platforms to develop efficient and selective catalysts to be implemented in electrocatalytic and photocatalytic devices. These catalysts, designed according to the inspiration provided by nature, are simple synthetic molecular systems capable of mimic features of the enzymatic activity. The present review aims to focus the attention on the mechanistic and structural aspects highlighted to be necessary to promote a proper catalytic activity. The determination of these characteristics is of interest both for clarifying aspects of the catalytic cycle of natural enzymes that are still unknown and for developing synthetic molecular catalysts that can readily be applied to artificial photosynthetic devices.
Collapse
|