1
|
Saha E, Jungi H, Dabas S, Mathew A, Kuniyil R, Subramanian S, Mitra J. Amine-rich Nickel(II)-Xerogel as a Highly Active Bifunctional Metallo-organo Catalyst for Aqueous Knoevenagel Condensation and Solvent-free CO 2 Cycloaddition. Inorg Chem 2023; 62:14959-14970. [PMID: 37672483 DOI: 10.1021/acs.inorgchem.3c01669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Metallogels formed from supramolecular interactions of low-molecular-weight gelators (LMWGs) combine the qualities of heterogeneous catalysts and offer the advantages of multifunctionality owing to the facile installation of desired task-specific moieties on the surface and along the channels of the gels. We discuss the applications of a triazole-based Ni(II) gel-derived xerogel (NiXero) having a high density of Ni(II)-nodes and appended primary amines as a recyclable heterogeneous catalyst for Knoevenagel condensation of aldehyde and malononitrile in water and the solvent-free cycloaddition of CO2 to form a series of cyclic carbonates with near-quantitative conversion of the respective epoxides, with low catalyst loading (0.59 mol %), high catalyst stability, and recyclability. The structural advantages of NiXero, due to the concurrent presence of bifunctional Lewis acid-base sites on the channels, open Ni(II) nodes, Ntriazole, pendant -NH2 and its chemical stability, are conducive to the cooperative heterogeneous catalytic activity under mild conditions. This work emphasizes the effective amalgamation of metals with purpose-built ligand systems for the construction of metallogels and their utility as heterogeneous catalysts for desired organic transformations.
Collapse
Affiliation(s)
- Ekata Saha
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Hiren Jungi
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Shilpa Dabas
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Abra Mathew
- Department of Chemistry, Indian Institute of Technology Palakkad (IIT Palakkad), Palakkad 678623, Kerala, India
| | - Rositha Kuniyil
- Department of Chemistry, Indian Institute of Technology Palakkad (IIT Palakkad), Palakkad 678623, Kerala, India
| | - Saravanan Subramanian
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Joyee Mitra
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, India
| |
Collapse
|
2
|
Xu JH, Peng SF, Shi YK, Ding S, Yang GS, Yang YQ, Xu YH, Jiang CJ, Su ZM. A novel zirconium-based metal-organic framework covalently modified by methyl pyridinium bromide for mild and co-catalyst free conversion of CO 2 to cyclic carbonates. Dalton Trans 2023; 52:659-667. [PMID: 36537538 DOI: 10.1039/d2dt03507c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Building metal-organic frameworks (MOFs) covalently modified by onium halides is a promising approach to develop efficient MOF-based heterogeneous catalysts for the cycloaddition of CO2 to epoxides (CCE) into cyclic carbonates. Herein, we report a novel zirconium-based MOF covalently modified by methyl pyridinium bromide, Zr6O4(OH)4(MPTDC)2.2(N-CH3-MPTDC)3.8Br3.8 ((Br-)CH3-Pyridinium-MOF-1), where MPTDC denotes 3-methyl-4-pyridin-4-yl-thieno[2,3-b] thiophene-2,5-dicarboxylate. The structure and composition of this complex were fully characterized with PXRD, NMR, XPS, TEM and so on. CO2 adsorption experiments show that (Br-)CH3-Pyridinium-MOF-1 has a higher affinity for CO2 than its electrically neutral precursor, which should be attributed to the fact that charging frameworks containing pyridinium salt have stronger polarization to CO2. (Br-)CH3-Pyridinium-MOF-1 integrated reactive Lewis acid sites and Br- nucleophilic anions and exhibited efficient catalytic activity for CCE under ambient pressure in the absence of co-catalysts and solvents. Furthermore, (Br-)CH3-Pyridinium-MOF-1 was recycled after five successive cycles without substantial loss in catalytic activity. The corresponding reaction mechanism also was speculated.
Collapse
Affiliation(s)
- Jia-Hui Xu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Shuai-Feng Peng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Yu-Kun Shi
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Shan Ding
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Guang-Sheng Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Yu-Qi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Yan-Hong Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| | - Chun-Jie Jiang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Zhong-Min Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
3
|
Nguyen QT, Do XH, Cho KY, Lee YR, Baek KY. Amine-functionalized bimetallic Co/Zn-zeolitic imidazolate frameworks as an efficient catalyst for the CO2 cycloaddition to epoxides under mild conditions. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Campisciano V, Valentino L, Morena A, Santiago-Portillo A, Saladino N, Gruttadauria M, Aprile C, Giacalone F. Carbon nanotube supported aluminum porphyrin-imidazolium bromide crosslinked copolymer: A synergistic bifunctional catalyst for CO2 conversion. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Musa SG, Aljunid Merican ZM, Akbarzadeh O. Study on Selected Metal-Organic Framework-Based Catalysts for Cycloaddition Reaction of CO 2 with Epoxides: A Highly Economic Solution for Carbon Capture and Utilization. Polymers (Basel) 2021; 13:3905. [PMID: 34833202 PMCID: PMC8619864 DOI: 10.3390/polym13223905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022] Open
Abstract
The level of carbon dioxide in the atmosphere is growing rapidly due to fossil fuel combustion processes, heavy oil, coal, oil shelter, and exhausts from automobiles for energy generation, which lead to depletion of the ozone layer and consequently result in global warming. The realization of a carbon-neutral environment is the main focus of science and academic researchers of today. Several processes were employed to minimize carbon dioxide in the air, some of which include the utilization of non-fossil sources of energy like solar, nuclear, and biomass-based fuels. Consequently, these sources were reported to have a relatively high cost of production and maintenance. The applications of both homogeneous and heterogeneous processes in carbon capture and storage were investigated in recent years and the focus now is on the conversion of CO2 into useful chemicals and compounds. It was established that CO2 can undergo cycloaddition reaction with epoxides under the influence of special catalysts to give cyclic carbonates, which can be used as value-added chemicals at a different level of pharmaceutical and industrial applications. Among the various catalysts studied for this reaction, metal-organic frameworks are now on the frontline as a potential catalyst due to their special features and easy synthesis. Several metal-organic framework (MOF)-based catalysts were studied for their application in transforming CO2 to organic carbonates using epoxides. Here, we report some recent studies of porous MOF materials and an in-depth discussion of two repeatedly used metal-organic frameworks as a catalyst in the conversion of CO2 to organic carbonates.
Collapse
Affiliation(s)
- Suleiman Gani Musa
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia;
- Department of Chemistry, Al-Qalam University Katsina, PMB 2137, Tafawa Balewa Way, Dutsin-ma Road, Katsina 820252, Nigeria
| | - Zulkifli Merican Aljunid Merican
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia;
- Institute of Contaminant Management for Oil & Gas, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
| | - Omid Akbarzadeh
- Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
6
|
One-pot synthesis of 3D-ZIF-7 supported on 2D-Zn–Benzimidazole–Acetate and its catalytic activity in the methoxycarbonylation of aniline with dimethyl carbonate. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
A catalytic approach of blending CO2-activating MOF struts for cycloaddition reaction in a helically interlaced Cu(II) amino acid imidazolate framework: DFT-corroborated investigation. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04507-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Duan R, Hu C, Zhou Y, Huang Y, Sun Z, Zhang H, Pang X. Propylene Oxide Cycloaddition with Carbon Dioxide and Homopolymerization: Application of Commercial Beta Zeolites. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ranlong Duan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yanchuan Zhou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yuezhou Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiqiang Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Han Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
9
|
Wang G, Guo R, Wang W, Liu W. Natural porous nanorods used for high-efficient capture and chemical conversion of CO2. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Porous aluminum-based DUT metal-organic frameworks for the transformation of CO2 into cyclic carbonates: A computationally supported study. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.12.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Zhang J, Zhu X, Zhang Y, Liu F, Ren T, Wang L, Zhang J. Synergistic effect of carboxylmethyl group and adjacent methylene substitution in pyrazolium ionic liquid promote the conversion of CO2 under benign condition. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Kurisingal JF, Rachuri Y, Gu Y, Choe Y, Park DW. Fabrication of hierarchically porous MIL-88-NH2(Fe): a highly efficient catalyst for the chemical fixation of CO2 under ambient pressure. Inorg Chem Front 2019. [DOI: 10.1039/c9qi01163c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A hierarchically micro- and mesoporous MIL-88-NH2 metal organic framework was prepared through an easy template directed methodology.
Collapse
Affiliation(s)
| | - Yadagiri Rachuri
- Division of Chemical and Biomolecular Engineering
- Pusan National University
- Busan
- Korea
| | - Yunjang Gu
- Division of Chemical and Biomolecular Engineering
- Pusan National University
- Busan
- Korea
| | - Youngson Choe
- Division of Chemical and Biomolecular Engineering
- Pusan National University
- Busan
- Korea
| | - Dae-Won Park
- Division of Chemical and Biomolecular Engineering
- Pusan National University
- Busan
- Korea
| |
Collapse
|