1
|
Loi QK, Searles DJ. Reaction Dynamics of CO 2 Hydrogenation on Iron Catalysts Using ReaxFF Molecular Dynamics Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18430-18438. [PMID: 39012085 DOI: 10.1021/acs.langmuir.4c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The conversion of CO2 to hydrocarbons using catalysts is a promising route to utilize CO2 and produce more valuable chemicals in a sustainable manner. Recent studies have shown that iron-based catalysts perform well for the hydrogenation of CO2. While the hydrogenation reaction mechanism in the gas phase is straightforward, when catalyzed by iron it has been demonstrated to involve various chemical transformations, and the selectivity and conversion are strongly dependent on the particle size. To further investigate the dependence of the reactivity of iron catalysts on cluster size, we performed reactive molecular dynamics simulations using the ReaxFF force field (ReaxFF-MD) for iron nanoclusters of various sizes in a CO2 and H2-rich environment. We demonstrated that the homogeneous hydrogenation of CO2 was correctly described by this ReaxFF model. The dissociation mechanism of CO2 on the Fe4, Fe16 clusters, and the bcc(100) Fe slab agrees with previous DFT results. The ReaxFF-MD simulations suggest a strong dependence of reactivity on the cluster size, with the Fe4 cluster having the highest reactivity. We show that ReaxFF-MD provides a route to understand reaction mechanisms in these nonequilibrium reactive processes where fast processes and local minima are important.
Collapse
Affiliation(s)
- Quang K Loi
- Centre for Theoretical and Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Debra J Searles
- Centre for Theoretical and Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Ramasamy N, Raj AJLP, Akula VV, Nagarasampatti Palani K. Leveraging experimental and computational tools for advancing carbon capture adsorbents research. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55069-55098. [PMID: 39225926 DOI: 10.1007/s11356-024-34838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
CO2 emissions have been steadily increasing and have been a major contributor for climate change compelling nations to take decisive action fast. The average global temperature could reach 1.5 °C by 2035 which could cause a significant impact on the environment, if the emissions are left unchecked. Several strategies have been explored of which carbon capture is considered the most suitable for faster deployment. Among different carbon capture solutions, adsorption is considered both practical and sustainable for scale-up. But the development of adsorbents that can exhibit satisfactory performance is typically done through the experimental approach. This hit and trial method is costly and time consuming and often success is not guaranteed. Machine learning (ML) and other computational tools offer an alternate to this approach and is accessible to everyone. Often, the research towards materials focuses on maximizing its performance under simulated conditions. The aim of this study is to present a holistic view on progress in material research for carbon capture and the various tools available in this regard. Thus, in this review, we first present a context on the workflow for carbon capture material development before providing various machine learning and computational tools available to support researchers at each stage of the process. The most popular application of ML models is for predicting material performance and recommends that ML approaches can be utilized wherever possible so that experimentations can be focused on the later stages of the research and development.
Collapse
Affiliation(s)
- Niranjan Ramasamy
- Department of Chemical Engineering, Rajalakshmi Engineering College, Chennai, India
| | | | - Vedha Varshini Akula
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Sriperumbudur, 602117, Kancheepuram, India
| | - Kavitha Nagarasampatti Palani
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Sriperumbudur, 602117, Kancheepuram, India.
| |
Collapse
|
3
|
Belthle KS, Martin WF, Tüysüz H. Synergistic Effects of Silica-Supported Iron-Cobalt Catalysts for CO 2 Reduction to Prebiotic Organics. ChemCatChem 2024; 16:cctc.202301218. [PMID: 39363906 PMCID: PMC7616659 DOI: 10.1002/cctc.202301218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 10/05/2024]
Abstract
To test the ability of geochemical surfaces in serpentinizing hydrothermal systems to catalyze reactions from which metabolism arose, we investigated H2-dependent CO2 reduction toward metabolic intermediates over silica-supported Co-Fe catalysts. Supported catalysts converted CO2 to various products at 180 °C and 2.0 MPa. The liquid product phase included formate, acetate, and ethanol, while the gaseous product phase consisted of CH4, CO, methanol, and C2-C7 linear hydrocarbons. The 1/1 ratio CoFe alloy with the same composition as the natural mineral wairauite yielded the highest concentrations of formate (6.0 mM) and acetate (0.8 mM), which are key intermediates in the acetyl-coenzyme A (acetyl-CoA) pathway of CO2 fixation. While Co-rich catalysts were proficient at hydrogenation, yielding mostly CH4, Fe-rich catalysts favored the formation of CO and methanol. Mechanistic studies indicated intermediate hydrogenation and C-C coupling activities of alloyed CoFe, in contrast to physical mixtures of both metals. Co in the active site of Co-Fe catalysts performed a similar reaction as tetrapyrrole-coordinated Co in the corrinoid iron-sulfur (CoFeS) methyl transferase in the acetyl-CoA pathway. In a temperature range characteristic for deeper regions of serpentinizing systems, oxygenate product formation was favored at lower, more biocompatible temperatures.
Collapse
Affiliation(s)
- Kendra S Belthle
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - William F Martin
- Institute of Molecular Evolution, University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
4
|
de Alwis C, Wahr K, Perrine KA. Influence of Cations on Direct CO 2 Capture and Mineral Film Formation: The Role of KCl and MgCl 2 at the Air/Electrolyte/Iron Interface. J Phys Chem A 2024; 128:4052-4067. [PMID: 38718205 DOI: 10.1021/acs.jpca.4c01096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Uncovering the mechanisms associated with CO2 capture through mineralization is vital for addressing rising CO2 levels. Iron in planetary soils, the mineral cycle, and atmospheric dust react with CO2 through complex surface chemistry. Here, the effect of cations on the growth of carbonate films on iron surfaces was investigated. In situ polarized modulated infrared reflection absorption spectroscopy was used to measure CO2 adsorption and oxidation of iron in MgCl2(aq) and KCl(aq), compared to FeCl2(aq) at the air/electrolyte/iron interface. The cation was found to influence the film composition and growth rates, as corroborated by infrared and photoelectron spectroscopy. In MgCl2(aq), a mixture of hydromagnesite, magnesite, and a Mg hydroxy carbonate film was grown on iron, while in KCl(aq), a potassium-rich bicarbonate film was grown. The cations were found to affect the rates of hydroxylation and carbonation, confirming a specific cation effect on carbonate film growth. In the submerged region, a heterogeneous mixture of lepidocrocite and iron hydroxy carbonate was produced, suggesting that Fe2+ dominates the surface products. Surface roughness measurements from in situ atomic force microscopy indicate iron initially corrodes faster in MgCl2(aq) than KCl(aq), due to the Cl- ions that initiate pitting and corrosion. In this region, cations were not found to affect the morphologies. This study shows surface corrosion is necessary to provide nucleation sites for film growth and that the cations influence the carbonate film, relevant for CO2 capture and planetary processes.
Collapse
Affiliation(s)
- Chathura de Alwis
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Kayleigh Wahr
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Kathryn A Perrine
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
5
|
Jiao W, Ding X, Yan S, Yan Z, Jiao W, Wang Z, Fang Y. Coupling experimental with simulation studies into the impact factors and reaction mechanism of sawdust char pressured hydrogasification on K-modified transition metal composite catalysts. BIORESOURCE TECHNOLOGY 2024; 395:130399. [PMID: 38286165 DOI: 10.1016/j.biortech.2024.130399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/06/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
The utilization of biomass char was hindered by the low gasification activity due to thick ring structures and unclear gasification mechanism. Herein, the mechanism was elucidated by experimental and DFT to improve the activity. The results demonstrated that temperature increased the gasification activity but did not changed the order of gasification activity of samples. Pressure dominated the position of the highest point of instantaneous CH4 yield, and high pressure enhanced carbon conversion by 81.72 % and 7.32 times. Moreover, KNi exhibited an uppermost catalytic activity with the instantaneous CH4 yield 1.89 times higher than that of raw char at 750 °C. The formation of the CxNi structure lowered the activation barrier for the ring opening reaction. Possible transformation pathways of Ni species were as follows: Ni(NO3)2·6H2O → NiO → Ni. KNi changed the reaction pathways and the most energy-consuming step. The study could shed light on the hydrogasification reaction mechanism.
Collapse
Affiliation(s)
- Weihong Jiao
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, PR China.
| | - Xiaoxiao Ding
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China.
| | - Shuai Yan
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, PR China
| | - Zhifeng Yan
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Weiyong Jiao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
| | - Zhiqing Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
| | - Yitian Fang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
| |
Collapse
|
6
|
He L, Wang Y, Zhang Q, Li X, Xu Y, Huang Y. Electrochemical Study on the Macro-Cell Corrosion of Pipeline Steel Partially Covered by Different Kinds of Mineral Deposits. ACS OMEGA 2023; 8:44013-44029. [PMID: 38027390 PMCID: PMC10666125 DOI: 10.1021/acsomega.3c06189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/01/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
This study presents the impact of mineral deposits (SiO2, Al2O3, and CaCO3) on the corrosion behavior of X65 pipeline steel in CO2-containing brine solution with low pH. The study investigates the initiation and propagation of under deposit corrosion (UDC) using a wire beam electrode (WBE) partially covered by different mineral deposit layers, in conjunction with electrochemical measurements and surface characterization. The results indicate that the corrosion behavior varies, depending on the characteristics of the deposit. During the test period, the Al2O3-covered steel acted as the main anode with more negative potential, while the bare steel acted as the cathode. The SiO2-covered steel acted as the cathode with more positive potential and a localized FeCO3 layer formed beneath the silica mineral. The CaCO3-covered steel initially acted as an anode with a more negative potential but transformed into the cathode at the end of the test. Additionally, shallow and small pits were observed beneath the deposits with the depth in the sequence Al2O3 > SiO2 > CaCO3.
Collapse
Affiliation(s)
- Limin He
- School
of Naval Architecture and Ocean Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yihan Wang
- School
of Naval Architecture and Ocean Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qiliang Zhang
- School
of Naval Architecture and Ocean Engineering, Dalian University of Technology, Dalian 116024, China
| | - XinCheng Li
- School
of Naval Architecture and Ocean Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yunze Xu
- School
of Naval Architecture and Ocean Engineering, Dalian University of Technology, Dalian 116024, China
- State
Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
| | - Yi Huang
- School
of Naval Architecture and Ocean Engineering, Dalian University of Technology, Dalian 116024, China
- State
Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
7
|
Foucher AC, Yang S, Rosen DJ, Huang R, Pyo JB, Kwon O, Owen CJ, Sanchez DF, Sadykov II, Grolimund D, Kozinsky B, Frenkel AI, Gorte RJ, Murray CB, Stach EA. Synthesis and Characterization of Stable Cu-Pt Nanoparticles under Reductive and Oxidative Conditions. J Am Chem Soc 2023; 145:5410-5421. [PMID: 36825993 DOI: 10.1021/jacs.2c13666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
We report a synthesis method for highly monodisperse Cu-Pt alloy nanoparticles. Small and large Cu-Pt particles with a Cu/Pt ratio of 1:1 can be obtained through colloidal synthesis at 300 °C. The fresh particles have a Pt-rich surface and a Cu-rich core and can be converted into an intermetallic phase after annealing at 800 °C under H2. First, we demonstrated the stability of fresh particles under redox conditions at 400 °C, as the Pt-rich surface prevents substantial oxidation of Cu. Then, a combination of in situ scanning transmission electron microscopy, in situ X-ray absorption spectroscopy, and CO oxidation measurements of the intermetallic CuPt phase before and after redox treatments at 800 °C showed promising activity and stability for CO oxidation. Full oxidation of Cu was prevented after exposure to O2 at 800 °C. The activity and structure of the particles were only slightly changed after exposure to O2 at 800 °C and were recovered after re-reduction at 800 °C. Additionally, the intermetallic CuPt phase showed enhanced catalytic properties compared to the fresh particles with a Pt-rich surface or pure Pt particles of the same size. Thus, the incorporation of Pt with Cu does not lead to a rapid deactivation and degradation of the material, as seen with other bimetallic systems. This work provides a synthesis route to control the design of Cu-Pt nanostructures and underlines the promising properties of these alloys (intermetallic and non-intermetallic) for heterogeneous catalysis.
Collapse
Affiliation(s)
- Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Shengsong Yang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel J Rosen
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Renjing Huang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jun Beom Pyo
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ohhun Kwon
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cameron J Owen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | | | | | | | - Boris Kozinsky
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Robert Bosch Research and Technology Center, Cambridge, Massachusetts 02139, United States
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States.,Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Raymond J Gorte
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christopher B Murray
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Attada Y, Velisoju VK, Mohamed HO, Ramirez A, Castaño P. Dual experimental and computational approach to elucidate the effect of Ga on Cu/CeO2–ZrO2 catalyst for CO2 hydrogenation. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Wang H, Nie X, Liu Y, Janik MJ, Han X, Deng Y, Hu W, Song C, Guo X. Mechanistic Insight into Hydrocarbon Synthesis via CO 2 Hydrogenation on χ-Fe 5C 2 Catalysts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37637-37651. [PMID: 35969512 DOI: 10.1021/acsami.2c07029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Converting CO2 into value-added chemicals and fuels is one of the promising approaches to alleviate CO2 emissions, reduce the dependence on nonrenewable energy resources, and minimize the negative environmental effect of fossil fuels. This work used density functional theory (DFT) calculations combined with microkinetic modeling to provide fundamental insight into the mechanisms of CO2 hydrogenation to hydrocarbons over the iron carbide catalyst, with a focus on understanding the energetically favorable pathways and kinetic controlling factors for selective hydrocarbon production. The crystal orbital Hamiltonian population analysis demonstrated that the transition states associated with O-H bond formation steps within the path are less stable than those of C-H bond formation, accounting for the observed higher barriers in O-H bond formation from DFT. Energetically favorable pathways for CO2 hydrogenation to CH4 and C2H4 products were identified which go through an HCOO intermediate, while the CH* species was found to be the key C1 intermediate over χ-Fe5C2(510). The microkinetic modeling results showed that the relative selectivity to CH4 is higher than C2H4 in CO2 hydrogenation, but the trend is opposite under CO hydrogenation conditions. The major impact on C2 hydrocarbon production is attributed to the high surface coverage of O* from CO2 conversion, which occupies crucial active sites and impedes C-C couplings to C2 species over χ-Fe5C2(510). The coexistence of iron oxide and carbide phases was proposed and the interfacial sites created between the two phases impact CO2 surface chemistry. Adding potassium into the Fe5C2 catalyst accelerates O* removal from the carbide surface, enhances the stability of the iron carbide catalyst, thus, promotes C-C couplings to hydrocarbons.
Collapse
Affiliation(s)
- Haozhi Wang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuan Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Michael J Janik
- EMS Energy Institute, PSU-DUT Joint Center for Energy Research, and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yida Deng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Wenbin Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT 999077, Hong Kong, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
10
|
Pahija E, Panaritis C, Gusarov S, Shadbahr J, Bensebaa F, Patience G, Boffito DC. Experimental and Computational Synergistic Design of Cu and Fe Catalysts for the Reverse Water–Gas Shift: A Review. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ergys Pahija
- Department of Chemical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, Québec H3C 3A7, Canada
| | - Christopher Panaritis
- Department of Chemical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, Québec H3C 3A7, Canada
| | - Sergey Gusarov
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
| | - Jalil Shadbahr
- Energy, Mining and Environment Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Farid Bensebaa
- Energy, Mining and Environment Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Gregory Patience
- Department of Chemical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, Québec H3C 3A7, Canada
| | - Daria Camilla Boffito
- Department of Chemical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, Québec H3C 3A7, Canada
| |
Collapse
|
11
|
Computational identification of facet-dependent CO2 initial activation and hydrogenation over iron carbide catalyst. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Kwawu CR, Aniagyei A, Konadu D, Menkah E, Tia R. First-principles DFT insights into the mechanisms of CO2 reduction to CO on Fe (100)-Ni bimetals. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02879-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Pawelec B, Guil-López R, Mota N, Fierro JLG, Navarro Yerga RM. Catalysts for the Conversion of CO 2 to Low Molecular Weight Olefins-A Review. MATERIALS 2021; 14:ma14226952. [PMID: 34832354 PMCID: PMC8622015 DOI: 10.3390/ma14226952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/13/2021] [Indexed: 01/05/2023]
Abstract
There is a large worldwide demand for light olefins (C2=-C4=), which are needed for the production of high value-added chemicals and plastics. Light olefins can be produced by petroleum processing, direct/indirect conversion of synthesis gas (CO + H2) and hydrogenation of CO2. Among these methods, catalytic hydrogenation of CO2 is the most recently studied because it could contribute to alleviating CO2 emissions into the atmosphere. However, due to thermodynamic reasons, the design of catalysts for the selective production of light olefins from CO2 presents different challenges. In this regard, the recent progress in the synthesis of nanomaterials with well-controlled morphologies and active phase dispersion has opened new perspectives for the production of light olefins. In this review, recent advances in catalyst design are presented, with emphasis on catalysts operating through the modified Fischer-Tropsch pathway. The advantages and disadvantages of olefin production from CO2 via CO or methanol-mediated reaction routes were analyzed, as well as the prospects for the design of a single catalyst for direct olefin production. Conclusions were drawn on the prospect of a new catalyst design for the production of light olefins from CO2.
Collapse
|
14
|
Effect of surface structure and Pd doping of Fe catalysts on the selective hydrodeoxygenation of phenol. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Liu X, Cao C, Tian P, Zhu M, Zhang Y, Xu J, Tian Y, Han YF. Resolving CO2 activation and hydrogenation pathways over iron carbides from DFT investigation. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Podrojková N, Sans V, Oriňak A, Oriňaková R. Recent Developments in the Modelling of Heterogeneous Catalysts for CO
2
Conversion to Chemicals. ChemCatChem 2020. [DOI: 10.1002/cctc.201901879] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Natalia Podrojková
- Department of Physical Chemistry Faculty of ScienceP.J. Šafárik University Moyzesova 11 Košice 041 54 Slovakia
| | - Victor Sans
- Institute of Advanced Materials (INAM)Universitat Jaume I Avda. Sos Baynat s/n Castellón de la Plana 12006 Spain
| | - Andrej Oriňak
- Department of Physical Chemistry Faculty of ScienceP.J. Šafárik University Moyzesova 11 Košice 041 54 Slovakia
| | - Renata Oriňaková
- Department of Physical Chemistry Faculty of ScienceP.J. Šafárik University Moyzesova 11 Košice 041 54 Slovakia
| |
Collapse
|
17
|
Chen H, Yang M, Liu J, Lu G, Feng X. Insight into the effects of electronegativity on the H2 catalytic activation for CO2 hydrogenation: four transition metal cases from a DFT study. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01009j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Electronegativity of transition metal dominates the type of H species, which has an important effect on the path choice of CO2 hydrogenation.
Collapse
Affiliation(s)
- Haipeng Chen
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471934
- China
| | - Minjian Yang
- College of Chemical Engineering
- Guizhou University of Engineering Science
- Bijie 551700
- China
| | - Jinqiang Liu
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471934
- China
| | - Guojian Lu
- Lianyungang Normal College
- Lianyungang 222006
- China
| | - Xun Feng
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471934
- China
| |
Collapse
|
18
|
Mohan O, Trinh QT, Banerjee A, Mushrif SH. Predicting CO2 adsorption and reactivity on transition metal surfaces using popular density functional theory methods. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1632448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ojus Mohan
- Energy Research Institute @NTU, Interdisciplinary Graduate School, Nanyang Technological University, Singapore
| | - Quang Thang Trinh
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Arghya Banerjee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Samir H. Mushrif
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
19
|
Nie X, Wang H, Liang Z, Yu Z, Zhang J, Janik MJ, Guo X, Song C. Comparative computational study of CO2 dissociation and hydrogenation over Fe-M (M = Pd, Ni, Co) bimetallic catalysts: The effect of surface metal content. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2018.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|