• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4635977)   Today's Articles (648)   Subscriber (50069)
For: Mondal U, Yadav GD. Perspective of dimethyl ether as fuel: Part I. Catalysis. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Number Cited by Other Article(s)
1
Weber JL, Mejía CH, de Jong KP, de Jongh PE. Recent advances in bifunctional synthesis gas conversion to chemicals and fuels with a comparison to monofunctional processes. Catal Sci Technol 2024;14:4799-4842. [PMID: 39206322 PMCID: PMC11347923 DOI: 10.1039/d4cy00437j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024]
2
Morales M, Rezayat M, García-González S, Mateo A, Jiménez-Piqué E. Ru-Ce0.7Zr0.3O2-δ as an Anode Catalyst for the Internal Reforming of Dimethyl Ether in Solid Oxide Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024;14:603. [PMID: 38607137 PMCID: PMC11013270 DOI: 10.3390/nano14070603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
3
van Kampen J, Overbeek J, Boon J, van Sint Annaland M. Continuous multi-column sorption-enhanced dimethyl ether synthesis (SEDMES): Dynamic operation. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2023.1055896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]  Open
4
Dong Q, Xu WL, Fan X, Li H, Klinghoffer N, Pyrzynski T, Meyer HS, Liang X, Yu M, Li S. Prototype Catalytic Membrane Reactor for Dimethyl Ether Synthesis via CO2 Hydrogenation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
5
Koybasi HH, Avci AK. Numerical Analysis of CO2-to-DME Conversion in a Membrane Microchannel Reactor. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
6
On the design of mesostructured acidic catalysts for the one-pot dimethyl ether production from CO2. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
7
A Review on Deactivation and Regeneration of Catalysts for Dimethyl Ether Synthesis. ENERGIES 2022. [DOI: 10.3390/en15155420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
8
Kinetics of the Direct DME Synthesis: State of the Art and Comprehensive Comparison of Semi-Mechanistic, Data-Based and Hybrid Modeling Approaches. Catalysts 2022. [DOI: 10.3390/catal12030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]  Open
9
Delolo FG, Fessler J, Neumann H, Junge K, dos Santos EN, Gusevskaya EV, Beller M. Cobalt‐Catalysed Reductive Etherification Using Phosphine Oxide Promoters under Hydroformylation Conditions. Chemistry 2022;28:e202103903. [DOI: 10.1002/chem.202103903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 11/09/2022]
10
Mondal U, Yadav GD. Direct synthesis of dimethyl ether from CO2 hydrogenation over a highly active, selective and stable catalyst containing Cu–ZnO–Al2O3/Al–Zr(1 : 1)-SBA-15. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00025c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
11
Koybasi HH, Avci AK. Modeling of a membrane integrated catalytic microreactor for efficient DME production from syngas with CO2. Catal Today 2022. [DOI: 10.1016/j.cattod.2020.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
12
Validation of a Fixed Bed Reactor Model for Dimethyl Ether Synthesis Using Pilot-Scale Plant Data. Catalysts 2021. [DOI: 10.3390/catal11121522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
13
Jung HS, Zafar F, Wang X, Nguyen TX, Hong CH, Hur YG, Choung JW, Park MJ, Bae JW. Morphology Effects of Ferrierite on Bifunctional Cu–ZnO–Al2O3/Ferrierite for Direct Syngas Conversion to Dimethyl Ether. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
14
Portillo A, Ateka A, Ereña J, Aguayo AT, Bilbao J. Conditions for the Joint Conversion of CO2 and Syngas in the Direct Synthesis of Light Olefins Using In2O3–ZrO2/SAPO-34 Catalyst. Ind Eng Chem Res 2021;61:10365-10376. [PMID: 35915619 PMCID: PMC9335533 DOI: 10.1021/acs.iecr.1c03556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
15
Bhatia P, Dharaskar S, Unnarkat AP. CO2 reduction routes to value-added oxygenates: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021;28:61929-61950. [PMID: 34553283 DOI: 10.1007/s11356-021-16003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
16
Koybasi HH, Hatipoglu C, Avci AK. Sustainable DME synthesis from CO2–rich syngas in a membrane assisted reactor–microchannel heat exchanger system. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
17
Lluna‐Galán C, Izquierdo‐Aranda L, Adam R, Cabrero‐Antonino JR. Catalytic Reductive Alcohol Etherifications with Carbonyl-Based Compounds or CO2 and Related Transformations for the Synthesis of Ether Derivatives. CHEMSUSCHEM 2021;14:3744-3784. [PMID: 34237201 PMCID: PMC8518999 DOI: 10.1002/cssc.202101184] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Indexed: 05/27/2023]
18
An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications. ENERGIES 2021. [DOI: 10.3390/en14185687] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
19
Rodriguez-Vega P, Ateka A, Kumakiri I, Vicente H, Ereña J, Aguayo AT, Bilbao J. Experimental implementation of a catalytic membrane reactor for the direct synthesis of DME from H2+CO/CO2. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116396] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
20
Direct Synthesis of Dimethyl Ether from CO2: Recent Advances in Bifunctional/Hybrid Catalytic Systems. Catalysts 2021. [DOI: 10.3390/catal11040411] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
21
Modeling the Direct Synthesis of Dimethyl Ether using Artificial Neural Networks. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202000226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
22
Behloul CR, Commenge JM, Castel C. Simulation of Reactors under Different Thermal Regimes and Study of the Internal Diffusional Limitation in a Fixed-Bed Reactor for the Direct Synthesis of Dimethyl Ether from a CO2-Rich Input Mixture and H2. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
23
Delgado Otalvaro N, Sogne G, Herrera Delgado K, Wild S, Pitter S, Sauer J. Kinetics of the direct DME synthesis from CO2 rich syngas under variation of the CZA-to-γ-Al2O3 ratio of a mixed catalyst bed. RSC Adv 2021;11:24556-24569. [PMID: 35481015 PMCID: PMC9036900 DOI: 10.1039/d1ra03452a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/03/2021] [Indexed: 01/08/2023]  Open
24
van Kampen J, Boon J, Vente J, van Sint Annaland M. Sorption enhanced dimethyl ether synthesis under industrially relevant conditions: experimental validation of pressure swing regeneration. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00431f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
25
Sun X, Yang Y, He Y, Zhu S, Liu Z. Stability of Zeolite HZSM-5 in Liquid Phase Dehydration of Methanol to Dimethyl Ether. Catal Letters 2020. [DOI: 10.1007/s10562-020-03454-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
26
Silica-Related Catalysts for CO2 Transformation into Methanol and Dimethyl Ether. Catalysts 2020. [DOI: 10.3390/catal10111282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
27
Yadav VG, Yadav GD, Patankar SC. The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-à-vis sustainability and the environment. CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY 2020;22:1757-1774. [PMID: 32982628 PMCID: PMC7505498 DOI: 10.1007/s10098-020-01945-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 05/24/2023]
28
van Kampen J, Boon J, Vente J, van Sint Annaland M. Sorption enhanced dimethyl ether synthesis for high efficiency carbon conversion: Modelling and cycle design. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
29
Development of a green process for DME production based on the methane tri-reforming. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2019.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
30
Kipnis MA, Volnina EA, Belostotskii IA, Levin IS. Features of Preparation of the Methanol Synthesis Component of a Bifunctional Dimethyl Ether Synthesis Catalyst. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s0023158420010024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
31
Ateka A, Ereña J, Bilbao J, Aguayo AT. Strategies for the Intensification of CO2 Valorization in the One-Step Dimethyl Ether Synthesis Process. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
32
Mondal U, Yadav GD. Perspective of dimethyl ether as fuel: Part II- analysis of reactor systems and industrial processes. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA