1
|
Ye N, Shen Y, Chen Y, Cao J, Lu X, Ji X. Enhanced CO 2 Capture through SAPO-34 Impregnated with Ionic Liquid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9097-9107. [PMID: 38640355 PMCID: PMC11064229 DOI: 10.1021/acs.langmuir.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024]
Abstract
The concurrent utilization of an adsorbent and absorbent for carbon dioxide (CO2) adsorption with synergistic effects presents a promising technique for CO2 capture. Here, 1-butyl-3-methylimidazole acetate ([Bmim][Ac]), with a high affinity for CO2, and the molecular sieve SAPO-34 were selected. The impregnation method was used to composite the hybrid samples of [Bmim][Ac]/SAPO-34, and the pore structure and surface property of prepared samples were characterized. The quantity and kinetics of the sorbed CO2 for loaded samples were measured using thermogravimetric analysis. The study revealed that SAPO-34 could retain its pristine structure after [Bmim][Ac] loading. The CO2 uptake of the loaded sample was 1.879 mmol g-1 at 303 K and 1 bar, exhibiting a 20.6% rise compared to that of the pristine SAPO-34 recording 1.558 mmol g-1. The CO2 uptake kinetics of the loaded samples were also accelerated, and the apparent mass transfer resistance for CO2 sorption was significantly reduced by 11.2% compared with that of the pure [Bmim][Ac]. The differential scanning calorimetry method revealed that the loaded sample had a lower CO2 desorption heat than that of the pure [Bmim][Ac], and the CO2 desorption heat of the loaded samples was between 30.6 and 40.8 kJ mol-1. The samples exhibited good cyclic stability. This material displays great potential for CO2 capture applications, facilitating the reduction of greenhouse gas emissions.
Collapse
Affiliation(s)
- Nannan Ye
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yusi Shen
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yifeng Chen
- CAF,
Key and Open Laboratory of Forest Chemical Engineering, Key Laboratory
of Biomass Energy and Material, SFA, National Engineering Laboratory
for Biomass Chemical Utilization, Institute
of Chemical Industry of Forest Products, Nanjing 210042, P. R. China
| | - Jian Cao
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Xiaohua Lu
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Suzhou
Laboratory, Suzhou 215100, P. R. China
| | - Xiaoyan Ji
- Division
of Energy Science/Energy Engineering, Luleå
University of Technology, Luleå 97187, Sweden
| |
Collapse
|
2
|
Palomar J, Lemus J, Navarro P, Moya C, Santiago R, Hospital-Benito D, Hernández E. Process Simulation and Optimization on Ionic Liquids. Chem Rev 2024; 124:1649-1737. [PMID: 38320111 PMCID: PMC10906004 DOI: 10.1021/acs.chemrev.3c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/16/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024]
Abstract
Ionic liquids (ILs) are promising alternative compounds that enable the development of technologies based on their unique properties as solvents or catalysts. These technologies require integrated product and process designs to select ILs with optimal process performances at an industrial scale to promote cost-effective and sustainable technologies. The digital era and multiscale research methodologies have changed the paradigm from experiment-oriented to hybrid experimental-computational developments guided by process engineering. This Review summarizes the relevant contributions (>300 research papers) of process simulations to advance IL-based technology developments by guiding experimental research efforts and enhancing industrial transferability. Robust simulation methodologies, mostly based on predictive COSMO-SAC/RS and UNIFAC models in Aspen Plus software, were applied to analyze key IL applications: physical and chemical CO2 capture, CO2 conversion, gas separation, liquid-liquid extraction, extractive distillation, refrigeration cycles, and biorefinery. The contributions concern the IL selection criteria, operational unit design, equipment sizing, technoeconomic and environmental analyses, and process optimization to promote the competitiveness of the proposed IL-based technologies. Process simulation revealed that multiscale research strategies enable advancement in the technological development of IL applications by focusing research efforts to overcome the limitations and exploit the excellent properties of ILs.
Collapse
Affiliation(s)
- Jose Palomar
- Chemical
Engineering Department, Autonomous University
of Madrid, Calle Tomás y Valiente 7, 28049 Madrid, Spain
| | - Jesús Lemus
- Chemical
Engineering Department, Autonomous University
of Madrid, Calle Tomás y Valiente 7, 28049 Madrid, Spain
| | - Pablo Navarro
- Chemical
Engineering Department, Autonomous University
of Madrid, Calle Tomás y Valiente 7, 28049 Madrid, Spain
| | - Cristian Moya
- Departamento
de Tecnología Química, Energética y Mecánica, Universidad Rey Juan Carlos, 28933 Madrid, Spain
| | - Rubén Santiago
- Departamento
de Ingeniería Eléctrica, Electrónica, Control,
Telemática y Química aplicada a la Ingeniería,
ETS de Ingenieros Industriales, Universidad
Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
| | - Daniel Hospital-Benito
- Chemical
Engineering Department, Autonomous University
of Madrid, Calle Tomás y Valiente 7, 28049 Madrid, Spain
| | - Elisa Hernández
- Chemical
Engineering Department, Autonomous University
of Madrid, Calle Tomás y Valiente 7, 28049 Madrid, Spain
| |
Collapse
|
3
|
Chen M, Xu J. CO 2 Capture Mechanism by Deep Eutectic Solvents Formed by Choline Prolinate and Ethylene Glycol. Molecules 2023; 28:5461. [PMID: 37513333 PMCID: PMC10385772 DOI: 10.3390/molecules28145461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The choline prolinate ([Ch][Pro]) as a hydrogen bond acceptor and ethylene glycol (EG) as a hydrogen bond donor are both used to synthesize the deep eutectic solvents (DESs) [Ch][Pro]-EG to capture CO2. The CO2 capacity of [Ch][Pro]-EG is determined, and the nuclear magnetic resonance (NMR) and infrared (IR) spectrum are used to investigate the CO2 capture mechanism. The results indicate that CO2 reacts with both the amino group of [Pro]- anion and the hydroxyl group of EG, and the mechanism found in this work is different from that reported in the literature for the [Ch][Pro]-EG DESs.
Collapse
Affiliation(s)
- Mingzhe Chen
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Jinming Xu
- School of Science, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
4
|
Gnilitskyi I, Bellucci S, Marrani AG, Shepida M, Mazur A, Zozulya G, Kordan V, Babizhetskyy V, Sahraoui B, Kuntyi O. Femtosecond laser-induced nano- and microstructuring of Cu electrodes for CO 2 electroreduction in acetonitrile medium. Sci Rep 2023; 13:8837. [PMID: 37258634 DOI: 10.1038/s41598-023-35869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
The dependency of CO2 reduction rate in acetonitrile-Bu4NClO4 solution on cathodes, which were modified by laser induction of a copper surface, was studied. The topography of laser-induced periodic surface structures (LIPSS) → grooves → spikes was successively formed by a certain number of pulses. It was proved that for a higher number of laser pulses, the surface area of the copper cathode increases and preferred platy orientation of the copper surface on [022] crystallografic direction and larger fluence values increase. At the same time, the content of copper (I) oxide on the surface of the copper cathode increases. Also, the tendency to larger fluency values is observed. It promotes the increase of cathodic current density for CO2 reduction, which reaches values of 14 mA cm-2 for samples with spikes surface structures at E = - 3.0 V upon a stable process.
Collapse
Affiliation(s)
- Iaroslav Gnilitskyi
- Lviv Polytechnic National University, 12 Bandery Str., Lviv, 79013, Ukraine.
- "NoviNano Lab" LLC, 5 Pasternaka, Lviv, 79000, Ukraine.
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044, Frascati, Italy.
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044, Frascati, Italy
| | - Andrea Giacomo Marrani
- Dipartimento di Chimica, Università di Roma "La Sapienza", p.le A. Moro 5, 00185, Rome, Italy
| | - Mariana Shepida
- Lviv Polytechnic National University, 12 Bandery Str., Lviv, 79013, Ukraine
| | - Artur Mazur
- Lviv Polytechnic National University, 12 Bandery Str., Lviv, 79013, Ukraine
| | - Galyna Zozulya
- Lviv Polytechnic National University, 12 Bandery Str., Lviv, 79013, Ukraine
| | - Vasyl Kordan
- Department of Inorganic Chemistry, Ivan Franko National University of Lviv, 6 Kyryla i Mefodiya Str., Lviv, 79005, Ukraine
| | - Volodymyr Babizhetskyy
- Department of Inorganic Chemistry, Ivan Franko National University of Lviv, 6 Kyryla i Mefodiya Str., Lviv, 79005, Ukraine
| | - Bouchta Sahraoui
- University of Angers, Photonics Laboratory of Angers LPhiA, SFR MATRIX, 2 Bd Lavoisier, 49045, Angers, France
| | - Orest Kuntyi
- Lviv Polytechnic National University, 12 Bandery Str., Lviv, 79013, Ukraine
| |
Collapse
|
5
|
Experimental and Computational Evaluation of 1,2,4-Triazolium-Based Ionic Liquids for Carbon Dioxide Capture. SEPARATIONS 2023. [DOI: 10.3390/separations10030192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Utilization of ionic liquids (ILs) for carbon dioxide (CO2) capture is continuously growing, and further understanding of the factors that influence its solubility (notably for new ILs) is crucial. Herein, CO2 absorption of two 1,2,4-triazolium-based ILs was compared with imidazolium-based Ils of different anions, namely bis(trifluoromethylsulfonyl)imide, tetrafluoroborate, and glycinate. The CO2 absorption capacity was determined using an isochoric saturation method and compared with predicted solubility employing COnductor-like Screening Model for Real Solvents (COSMO-RS). To gain an understanding of the effects of cations and anions of the ILs on the CO2 solubility, the molecular orbitals energy levels were calculated using TURBOMOLE. Triazolium-based ILs exhibit higher absorption capacity when compared to imidazolium-based ILs for the same anions. The results also showed that the anions’ energy levels are more determinant towards solubility than the cations’ energy levels, which can be explained by the higher tendency of CO2 to accept electrons than to donate them.
Collapse
|
6
|
Das I, Rama Swami K, Gardas RL. Influence of alkyl substituent on thermophysical properties and CO2 absorption studies of diethylenetriamine- based ionic liquids. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Insights into the volumetric properties, conductive property, and interaction behaviors of two nitrile functionalized ionic liquids mixture systems with γ-butyrolactone. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Foorginezhad S, Yu G, Ji X. Reviewing and screening ionic liquids and deep eutectic solvents for effective CO2 capture. Front Chem 2022; 10:951951. [PMID: 36034653 PMCID: PMC9399623 DOI: 10.3389/fchem.2022.951951] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
CO2 capture is essential for both mitigating CO2 emissions and purifying/conditioning gases for fuel and chemical production. To further improve the process performance with low environmental impacts, different strategies have been proposed, where developing liquid green absorbent for capturing CO2 is one of the effective options. Ionic liquids (IL)/deep eutectic solvents (DES) have recently emerged as green absorbents with unique properties, especially DESs also benefit from facile synthesis, low toxicity, and high biodegradability. To promote their development, this work summarized the recent research progress on ILs/DESs developed for CO2 capture from the aspects of those physical- and chemical-based, and COSMO-RS was combined to predict the properties that are unavailable from published articles in order to evaluate their performance based on the key properties for different IL/DES-based technologies. Finally, top 10 ILs/DESs were listed based on the corresponding criteria. The shared information will provide insight into screening and further developing IL/DES-based technologies for CO2 capture.
Collapse
Affiliation(s)
- Sahar Foorginezhad
- Energy Science/Energy Engineering, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden
| | - Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- *Correspondence: Gangqiang Yu, ; Xiaoyan Ji,
| | - Xiaoyan Ji
- Energy Science/Energy Engineering, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden
- *Correspondence: Gangqiang Yu, ; Xiaoyan Ji,
| |
Collapse
|
9
|
Tolmachev D, Lukasheva N, Ramazanov R, Nazarychev V, Borzdun N, Volgin I, Andreeva M, Glova A, Melnikova S, Dobrovskiy A, Silber SA, Larin S, de Souza RM, Ribeiro MCC, Lyulin S, Karttunen M. Computer Simulations of Deep Eutectic Solvents: Challenges, Solutions, and Perspectives. Int J Mol Sci 2022; 23:645. [PMID: 35054840 PMCID: PMC8775846 DOI: 10.3390/ijms23020645] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
Deep eutectic solvents (DESs) are one of the most rapidly evolving types of solvents, appearing in a broad range of applications, such as nanotechnology, electrochemistry, biomass transformation, pharmaceuticals, membrane technology, biocomposite development, modern 3D-printing, and many others. The range of their applicability continues to expand, which demands the development of new DESs with improved properties. To do so requires an understanding of the fundamental relationship between the structure and properties of DESs. Computer simulation and machine learning techniques provide a fruitful approach as they can predict and reveal physical mechanisms and readily be linked to experiments. This review is devoted to the computational research of DESs and describes technical features of DES simulations and the corresponding perspectives on various DES applications. The aim is to demonstrate the current frontiers of computational research of DESs and discuss future perspectives.
Collapse
Affiliation(s)
- Dmitry Tolmachev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Lukasheva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Ruslan Ramazanov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Victor Nazarychev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Borzdun
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Igor Volgin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Maria Andreeva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Artyom Glova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Sofia Melnikova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Alexey Dobrovskiy
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Steven A. Silber
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Sergey Larin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Rafael Maglia de Souza
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Mauro Carlos Costa Ribeiro
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Sergey Lyulin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Mikko Karttunen
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|