1
|
Wang X, Li R, Luo X, Mu J, Peng J, Yan G, Wei P, Tian Z, Huang Z, Cao Z. Enhanced CO oxidation performance over hierarchical flower-like Co 3O 4 based nanosheets via optimizing oxygen activation and CO chemisorption. J Colloid Interface Sci 2024; 654:454-465. [PMID: 37857098 DOI: 10.1016/j.jcis.2023.10.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Enhancing low-temperature activity is a focus for carbon monoxide (CO) elimination by catalytic oxidation. In this work, the hierarchical flower-like silver (Ag) modified cobalt oxides (Co3O4) nanosheets were prepared by solvothermal method and applied into catalytic CO oxidation. The doped Ag species in the form of AgCoO2 induced the prolongated surface Co-O bond and weaker bond intensity. Consequently, the oxygen activation/migration ability and redox capacity of Ag0.02Co were enhanced with more oxygen vacancies. The chemisorbed CO was preferentially converted to CO2 but not carbonates. The inhibited carbonates accumulation could avoid the coverage of active sites. According to Density functional theory (DFT) calculations, the electron transfer from AgCoO2 to Co3O4 promote electron donation ability of Co3O4 layer, benefiting for oxygen activation. Moreover, the longer Co-C and C-O bond length suggest the weakened chemisorption strength and higher active of CO molecule. The Ag modified Co3O4 exhibited more satisfactory activity at lower temperature. Typically, it realized 100% CO conversion at 90 °C, and displayed 6.3-fold higher reaction rate than pristine Co3O4 at 40 °C. Moreover, the Ag0.02Co exhibited outstanding long-term stability and water resistance. In summary, the optimized oxygen activation, CO chemisorption and interfacial electron transfer synergistically boosted the CO oxidation activity on Ag modified Co3O4.
Collapse
Affiliation(s)
- Xinyang Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Rui Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinyu Luo
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jincheng Mu
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Jianbiao Peng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guangxuan Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pengkun Wei
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhenbang Tian
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou, Henan 450002, China
| | - Zuohua Huang
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou, Henan 450002, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
2
|
Gao W, Liu S, Sun G, Zhang C, Pan Y. Single-Atom Catalysts for Hydrogen Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300956. [PMID: 36950768 DOI: 10.1002/smll.202300956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Selective hydrogenation is one of the most important reactions in fine chemical industry, and the activation of H2 is the key step for hydrogenation. Catalysts play a critical role in selective hydrogenation, and some single-atom catalysts (SACs) are highly capable of activating H2 in selective hydrogenation by virtue of the maximized atom utilization and the highly uniform active sites. Therefore, more research efforts are needed for the rational design of SACs with superior H2 -activating capabilities. Herein, the research progress on H2 activation in typical hydrogenation systems (such as alkyne hydrogenation, hydroformylation, hydrodechlorination, hydrodeoxygenation, nitroaromatics hydrogenation, and polycyclic aromatics hydrogenation) is reviewed, the mechanisms of SACs for H2 activation are summarized, and the structural regulation strategies for SACs are proposed to promote H2 activation and provide schemes for the design of high-selectivity hydrogenation catalysts from the atomic scale. At the end of this review, an outlook on the opportunities and challenges for SACs to be developed for selective hydrogenation is presented.
Collapse
Affiliation(s)
- Wenwen Gao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Shihuan Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Guangxun Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Chao Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| |
Collapse
|
3
|
Tao L, Dastan D, Wang W, Poldorn P, Meng X, Wu M, Zhao H, Zhang H, Li L, An B. Metal-Decorated InN Monolayer Senses N 2 against CO 2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12534-12544. [PMID: 36812391 DOI: 10.1021/acsami.2c21463] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Poor selectivity is a common problem faced by gas sensors. In particular, the contribution of each gas cannot be reasonably distributed when a binary mixture gas is co-adsorbed. In this paper, taking CO2 and N2 as an example, density functional theory is used to reveal the mechanism of selective adsorption of a transition metal (Fe, Co, Ni, and Cu)-decorated InN monolayer. The results show that Ni decoration can improve the conductivity of the InN monolayer while at the same time demonstrating an unexpected affinity for binding N2 instead of CO2. Compared with the pristine InN monolayer, the adsorption energies of N2 and CO2 on the Ni-decorated InN are dramatically increased from -0.1 to -1.93 eV and from -0.2 to -0.66 eV, respectively. Interestingly, for the first time, the density of states demonstrates that the Ni-decorated InN monolayer achieves a single electrical response to N2, eliminating the interference of CO2. Furthermore, the d-band center theory explains the advantage of Ni decorated in gas adsorption over Fe, Co, and Cu atoms. We also highlight the necessity of thermodynamic calculations in evaluating practical applications. Our theoretical results provide new insights and opportunities for exploring N2-sensitive materials with high selectivity.
Collapse
Affiliation(s)
- Lin Tao
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Davoud Dastan
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Wensen Wang
- Institut Européen des Membranes, Universite Montpellier, Montpellier 34000, France
| | - Preeyaporn Poldorn
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Xianze Meng
- School of Materials, Sun Yat-sen University, Guangzhou 510006, China
| | - Mingjie Wu
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Hongwei Zhao
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Han Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Lixiang Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Baigang An
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| |
Collapse
|
4
|
Wang C, Guo C. Nitrogen atom coordination tuned transition metal catalysts for NO oxidation and reduction. CHEMOSPHERE 2022; 309:136735. [PMID: 36209844 DOI: 10.1016/j.chemosphere.2022.136735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Developing an efficient catalyst for NO oxidation and reduction at ambient temperature is a significant challenge. Recent studies have suggested that the N-coordinated transition metal (TM) single atom catalysts (SACs) have high catalytic activity and stability. Herein, we report the activation potential of a series of 3d TM atoms supported on N coordination-tuned graphene (GR) for NO oxidation and reduction. The results show that the N coordination pattern can greatly alter the catalytic reactivity of TM on the catalysts, and the TM atom on the catalysts with three-coordinated pyridinic nitrogen TM-N3@GR exhibit the strongest chemical activity. Among the TM-N3@GR catalysts, Ti-N3@GR is the most promising candidate. The rate constants and equilibrium constants were calculated to evaluate the kinetic and thermodynamic feasibility of the catalytic reaction, respectively. Our results demonstrate that the reduction of NO to N2 on Ti-N3@GR can occur at ambient temperature with a large exotherm of 6.99 eV, and the oxidation of NO to NO2 on Ti-N3@GR can easily proceed when the temperature reaches 360 K with a large equilibrium constant. Our studies are of great significance for understanding the performance of N coordination-tuned catalysts and designing Ti-based catalysts for NO oxidation and reduction.
Collapse
Affiliation(s)
- Chong Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China.
| | - Chen Guo
- College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
5
|
Zhang Y, Cao X, Cao Z. Unraveling the Catalytic Performance of the Nonprecious Metal Single-Atom-Embedded Graphitic s-Triazine-Based C 3N 4 for CO 2 Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35844-35853. [PMID: 35904900 DOI: 10.1021/acsami.2c09813] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Graphitic carbon nitride (g-C3N4) is regarded as a promising potent photoelectrocatalyst for CO2 reduction. Here, extensive first-principles calculations and ab initio molecular dynamics (AIMD) simulations are performed to systematically explore the structural and electronic properties of nonprecious metal single-atom-embedded graphitic s-triazine-based C3N4 (M@gt-C3N4, M = Mn, Fe, Co, Ni, Cu, and Mo) monolayer materials and their catalytic performances as the single-atom catalysts (SACs) for CO2 hydrogenation to HCOOH, CO, and CH3OH. It is found that the atomically dispersed non-noble metal Mn, Fe, Co, and Mo sites anchored on gt-C3N4 can efficiently activate both H2 and CO2, and their coadsorbed state serves as a precursor to the hydrogenation of CO2 to different C1 products. Among these SACs (M@gt-C3N4, M = Mn, Fe, Co, and Mo), Co@gt-C3N4 was predicted to have the best catalytic performance for CO2 hydrogenation to C1 products, although their mechanistic details are somewhat different. The predicted energy barriers of the rate-determining steps for the conversion of CO2 into HCOOH, CO, and CH3OH on Co@gt-C3N4 are 0.58, 0.67, and 1.19 eV, respectively. The desorption of products is generally energy-demanding, but it can be facilitated remarkably by the subsequent adsorption of H2, which regenerates M@gt-C3N4 for the next catalytic cycle. The present study demonstrates that the catalytic performance of gt-C3N4 can be well regulated by embedding the non-noble metal single atom, and the porous gt-C3N4 is nicely suited for the construction of high-performance single-atom catalysts.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinrui Cao
- Department of Physics and Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
A comprehensive DFT study of CO2 methanation on the Ru-doped Ni(111) surface. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Naimatullah, Li D, Gahungu G, Li W, Zhang J. First-principles calculations on CO2 hydrogenation to formic acid over a metal-doped boron phosphide. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Rios C, Salcedo R. CO 2 capture and a route to transform it in formic acid: a theoretical approach. J Mol Model 2022; 28:183. [PMID: 35676443 DOI: 10.1007/s00894-022-05175-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
New organic frameworks (COFs) employing two coronene molecules forced to adopt a parallel conformation thus forming a molecular reactor are proposed. These COFs exhibit different distances between the coronene units, thus creating diverse electronic environments. The simulation of the trapping of CO2 and H2 molecules in the reactor hollow having distinct anchor fragments yields in the two cases formic acid. The analysis of the reaction profile allowed us to propose a thermodynamically favored process. The nature of the frontier molecular orbitals in the involved processes is also discussed. Reaction profile of CO2 and H2 process to yield formic acid.
Collapse
Affiliation(s)
- Citlalli Rios
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510, Coyoacán, Ciudad de México, Mexico.
| | - Roberto Salcedo
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510, Coyoacán, Ciudad de México, Mexico
| |
Collapse
|
9
|
Liu Z, Ding X, Zhu R, Li Y, Wang Y, Sun W, Wang D, Wu L, Zheng L. Investigation on the Effect of Highly Active Ni/ZrO
2
Catalysts Modified by MgO‐Nd
2
O
3
Promoters in CO
2
Methanation at Low Temperature Condition. ChemistrySelect 2022. [DOI: 10.1002/slct.202103774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhiru Liu
- School of Chemical Engineering Northwest University 229 N.Taibai Road Xi'an Shaanxi 710069 China
| | - Xin Ding
- School of Chemical Engineering Northwest University 229 N.Taibai Road Xi'an Shaanxi 710069 China
| | - Rong Zhu
- School of Chemical Engineering Northwest University 229 N.Taibai Road Xi'an Shaanxi 710069 China
| | - Yanan Li
- School of Chemical Engineering Northwest University 229 N.Taibai Road Xi'an Shaanxi 710069 China
| | - Yuqi Wang
- School of Chemical Engineering Northwest University 229 N.Taibai Road Xi'an Shaanxi 710069 China
| | - Wen Sun
- School of Chemical Engineering Northwest University 229 N.Taibai Road Xi'an Shaanxi 710069 China
| | - Di Wang
- School of Chemical Engineering Northwest University 229 N.Taibai Road Xi'an Shaanxi 710069 China
| | - Le Wu
- School of Chemical Engineering Northwest University 229 N.Taibai Road Xi'an Shaanxi 710069 China
| | - Lan Zheng
- School of Chemical Engineering Northwest University 229 N.Taibai Road Xi'an Shaanxi 710069 China
| |
Collapse
|
10
|
Zhang Y, Mo Y, Cao Z. Rational Design of Main Group Metal-Embedded Nitrogen-Doped Carbon Materials as Frustrated Lewis Pair Catalysts for CO 2 Hydrogenation to Formic Acid. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1002-1014. [PMID: 34935336 DOI: 10.1021/acsami.1c20230] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing efficient and inexpensive main group catalysts for CO2 conversion and utilization has attracted increasing attention, as the conversion process would be both economical and environmentally benign. Here, based on the main group element Al, we designed several heterogeneous frustrated Lewis acid/base pair (FLP) catalysts and performed extensive first-principles calculations for the hydrogenation of CO2. These catalysts, including Al@N-Gr-1, Al@N-Gr-2, and Al@C2N, are composed of a single Al atom and two-dimensional (2D) N-doped carbon-based materials to form frustrated Al/C or Al/N Lewis acid/base pairs, which are all predicted to have high reactivity to absorb and activate hydrogen (H2). Compared with Al@N-Gr-1, both Al@N-Gr-2 and Al@C2N, especially Al@N-Gr-2, containing Al/N Lewis pairs exhibit better catalytic activity for CO2 hydrogenation with lower activation energies. CO2 hydrogenation on the three catalysts prefers to go through a three-step mechanism, i.e., the heterolytic dissociation of H2, followed by the transfer of the hydride near Al to CO2, and finally the activation of a second H2 molecule. Other IIIA group element (B and Ga)-embedded N-Gr-2 materials (B@N-Gr-2 and Ga@N-Gr-2) were also explored and compared. Both Al@N-Gr-2 and Ga@N-Gr-2 show higher catalytic activity for CO2 hydrogenation to HCOOH than B@N-Gr-2. However, the CO2 hydrogenation path on Ga@N-Gr-2 tends to follow a two-step mechanism, including H2 dissociation and subsequent hydrogen transfer. The present study provides a potential solution for CO2 hydrogenation by designing novel and effective FLP catalysts based on main group elements.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemistry Engineering, Xiamen University, Xiamen 361005, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemistry Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
11
|
Single Ni supported on Ti3C2O2 for uninterrupted CO2 catalytic hydrogenation to formic acid: A DFT study. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|