1
|
Sikdar N, Laha S, Jena R, Dey A, Rahimi FA, Maji TK. An adsorbate biased dynamic 3D porous framework for inverse CO 2 sieving over C 2H 2. Chem Sci 2024; 15:7698-7706. [PMID: 38784756 PMCID: PMC11110155 DOI: 10.1039/d3sc06611h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/07/2024] [Indexed: 05/25/2024] Open
Abstract
Separating carbon dioxide (CO2) from acetylene (C2H2) is one of the most critical and complex industrial separations due to similarities in physicochemical properties and molecular dimensions. Herein, we report a novel Ni-based three-dimensional framework {[Ni4(μ3-OH)2(μ2-OH2)2(1,4-ndc)3](3H2O)}n (1,4-ndc = 1,4-naphthalenedicarboxylate) with a one-dimensional pore channel (3.05 × 3.57 Å2), that perfectly matches with the molecular size of CO2 and C2H2. The dehydrated framework shows structural transformation, decorated with an unsaturated Ni(ii) centre and pendant oxygen atoms. The dynamic nature of the framework is evident by displaying a multistep gate opening type CO2 adsorption at 195, 273, and 298 K, but not for C2H2. The real time breakthrough gas separation experiments reveal a rarely attempted inverse CO2 selectivity over C2H2, attributed to open metal sites with a perfect pore aperture. This is supported by crystallographic analysis, in situ spectroscopic inspection, and selectivity approximations. In situ DRIFTS measurements and DFT-based theoretical calculations confirm CO2 binding sites are coordinatively unsaturated Ni(ii) and carboxylate oxygen atoms, and highlight the influence of multiple adsorption sites.
Collapse
Affiliation(s)
- Nivedita Sikdar
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| | - Subhajit Laha
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| | - Rohan Jena
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| | - Anupam Dey
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| |
Collapse
|
2
|
Frías-Ureña PM, Bárcena-Soto M, Orozco-Guareño E, Gutiérrez-Becerra A, Mota-Morales JD, Chavez K, Soto V, Rivera-Mayorga JA, Escalante-Vazquez JI, Gómez-Salazar S. Porous Structural Properties of K or Na-Co Hexacyanoferrates as Efficient Materials for CO 2 Capture. MATERIALS (BASEL, SWITZERLAND) 2023; 16:608. [PMID: 36676342 PMCID: PMC9863694 DOI: 10.3390/ma16020608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The stoichiometry of the components of hexacyanoferrate materials affecting their final porosity properties and applications in CO2 capture is an issue that is rarely studied. In this work, the effect that stoichiometry of all element components and oxidation states of transition metals has on the structures of mesoporous K or Na-cobalt hexacyanoferrates (CoHCFs) and CO2 removal is reported. A series of CoHCFs model systems are synthesized using the co-precipitation method with varying amounts of Co ions. CoHCFs are characterized by N2 adsorption, TGA, FTIR-ATR, XRD, and XPS. N2 adsorption results reveal a more developed external surface area (72.69-172.18 m2/g) generated in samples containing mixtures of K+/Fe2+/Fe3+ ions (system III) compared to samples with Na+/Fe2+ ions (systems I, II). TGA results show that the porous structure of CoHCFs is affected by Fe and Co ions oxidation states, the number of water molecules, and alkali ions. The formation of two crystalline cells (FCC and triclinic) is confirmed by XRD results. Fe and Co oxidation states are authenticated by XPS and allow for the confirmation of charges involved in the stabilization of CoCHFs. CO2 removal capacities (3.04 mmol/g) are comparable with other materials reported. CO2 adsorption kinetics is fast (3-6 s), making CoHCFs attractive for continuous operations. Qst (24.3 kJ/mol) reveals a physical adsorption process. Regeneration effectiveness for adsorption/desorption cycles indicates ~1.6% loss and selectivity (~47) for gas mixtures (CO2:N2 = 15:85). The results of this study demonstrate that the CoHCFs have practical implications in the potential use of CO2 capture and flue gas separations.
Collapse
Affiliation(s)
- Paloma M. Frías-Ureña
- Departamento de Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| | - Maximiliano Bárcena-Soto
- Departamento de Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| | - Eulogio Orozco-Guareño
- Departamento de Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| | - Alberto Gutiérrez-Becerra
- Departamento de Ciencias Básicas y Aplicadas, Universidad de Guadalajara (CUTonala), Avenue Nuevo Periférico 555, Tonalá 45425, Mexico
| | - Josué D. Mota-Morales
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de Mexico, Querétaro 76230, Mexico
| | - Karina Chavez
- Departamento de Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| | - Víctor Soto
- Departamento de Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
- Graduate Program in Materials Science, Departamento de Ingeniería de Proyectos, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| | - José A. Rivera-Mayorga
- Departamento de Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| | - José I. Escalante-Vazquez
- Departamento de Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| | - Sergio Gómez-Salazar
- Departamento de Ingeniería Química, Universidad de Guadalajara (CUCEI), Boulevard Marcelino García Barragán #1421, Esquina Calzada Olímpica, Guadalajara 44430, Mexico
| |
Collapse
|
3
|
Song Z, Bai J, Wang J, Liu L, Zhu X, Jin X. Different Agglomeration Processes Induced by the Varied Interaction of Fe-Fe Analogues with Differently Charged Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8469-8476. [PMID: 35762983 DOI: 10.1021/acs.langmuir.2c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The catalytic activity of Prussian blue analogues (PBAs) is mainly tuned via the control of material sizes and morphologies. However, the shapes and sizes of many PBAs are difficult to control. In this work, a facile approach is demonstrated using differently charged surfactants to tune the catalytic activity of PBAs. Fe-Fe PBAs prepared with non-ionic P123, cationic cetyltrimethylammonium bromide, and anionic sodium dodecyl sulfate are chosen to study the effect of surfactant charges on the catalytic activity. The transesterification of propylene carbonate to dimethyl carbonate by methanol is selected as a model reaction. Owing to the different agglomeration processes of PB particles after modified with differently charged surfactants, significantly varied shapes and sizes were observed. Accordingly, the catalytic activity is greatly varied by adding surfactants. The different catalytic activities may arise from the different behaviors of agglomeration of PB particles after surfactant modification as well as the material size and shape changes. Besides, apparent activation energies for PBs adding different surfactants were derived. Finally, the agglomeration mechanism of PB particles in the presence of differently charged surfactants was proposed.
Collapse
Affiliation(s)
- Ziwei Song
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Juan Bai
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Jinyao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| | - Lijuan Liu
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Xu Zhu
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province 266580, China
| |
Collapse
|
5
|
Ali Abd A, Roslee Othman M, Helwani Z. Evaluation of thermal effects on carbon dioxide breakthrough curve for biogas upgrading using pressure swing adsorption. ENERGY CONVERSION AND MANAGEMENT 2021; 247:114752. [DOI: 10.1016/j.enconman.2021.114752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|