1
|
Cai P, Weng W, Han Y, Li X, Lu Z, Wen Z. Boosting multi-carbon products selectivity of carbon dioxide reduction via bifunctional cyclodextrin-modification on copper/copper(I) oxide electrocatalysts. J Colloid Interface Sci 2024; 680:453-458. [PMID: 39522240 DOI: 10.1016/j.jcis.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Electrochemical carbon dioxide reduction to multi-carbon (C2+) products presents a significant opportunity for converting greenhouse gases into valuable fuels and feedstocks. The development of highly active and stable catalysts remains a critical challenge. In this study, we report the design and synthesis of cyclodextrin-modified Cu/Cu2O electrocatalysts, which exhibit remarkable efficiency in driving the CO2 electroreduction process towards C2+ products. Our optimized catalyst achieves a C2+ Faradaic efficiency exceeding 50 % at a high current density of over 200 mA cm-2. Experimental findings, supported by density functional theory (DFT) calculations, reveal that cyclodextrin plays a dual role in stabilizing Cu+ and increasing the surface density of hydroxyl radicals. This dual function greatly benefits for enhancing *CO intermediate adsorption and promotes *CHO formation, thereby facilitating the crucial dimerization step for the formation of C2+ products. This work provides valuable insights into the development of highly active and selective electrocatalysts by carefully tuning the local catalytic environment, potentially opening new avenues for functionalizing electrocatalysts for future research in this area.
Collapse
Affiliation(s)
- Pingwei Cai
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Wanting Weng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yue Han
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xin Li
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhiwen Lu
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhenhai Wen
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| |
Collapse
|
2
|
Dong W, Fu D, Zhang Z, Wu Z, Zhao H, Liu W. Efficient electrocatalytic CO 2 reduction to ethylene using cuprous oxide derivatives. Front Chem 2024; 12:1482168. [PMID: 39469416 PMCID: PMC11514382 DOI: 10.3389/fchem.2024.1482168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Copper-based materials play a vital role in the electrochemical transformation of CO2 into C2/C2+ compounds. In this study, cross-sectional octahedral Cu2O microcrystals were prepared in situ on carbon paper electrodes via electrochemical deposition. The morphology and integrity of the exposed crystal surface (111) were meticulously controlled by adjusting the deposition potential, time, and temperature. These cross-sectional octahedral Cu2O microcrystals exhibited high electrocatalytic activity for ethylene (C2H4) production through CO2 reduction. In a 0.1 M KHCO3 electrolyte, the Faradaic efficiency for C2H4 reached 42.0% at a potential of -1.376 V vs. RHE. During continuous electrolysis over 10 h, the FE (C2H4) remained stable around 40%. During electrolysis, the fully exposed (111) crystal faces of Cu2O microcrystals are reduced to Cu0, which enhances C-C coupling and could serve as the main active sites for catalyzing the conversion of CO2 to C2H4.
Collapse
Affiliation(s)
- Wenfei Dong
- Ningxia Key Laboratory of Green Catalytic Materials and Technology, College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan, China
| | - Dewen Fu
- Ningxia Key Laboratory of Green Catalytic Materials and Technology, College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan, China
| | - Zhifeng Zhang
- Ningxia Key Laboratory of Green Catalytic Materials and Technology, College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan, China
| | - Zhiqiang Wu
- Ningxia Key Laboratory of Green Catalytic Materials and Technology, College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan, China
| | - Hongjian Zhao
- Ningxia Key Laboratory of Green Catalytic Materials and Technology, College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan, China
| | - Wangsuo Liu
- Department of Chemical and Environmental Engineering, Hetao College, Bayannur, Inner Mongolia, China
| |
Collapse
|
3
|
Kim JY, Hong WT, Phu TKC, Cho SC, Kim B, Baeck U, Oh H, Koh JH, Yu X, Choi CH, Park J, Lee SU, Chung C, Kim JK. Proton-Coupled Electron Transfer on Cu 2O/Ti 3C 2T x MXene for Propane (C 3H 8) Synthesis from Electrochemical CO 2 Reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405154. [PMID: 39159072 PMCID: PMC11497005 DOI: 10.1002/advs.202405154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) to produce value-added multi-carbon chemicals has been an appealing approach to achieving environmentally friendly carbon neutrality in recent years. Despite extensive research focusing on the use of CO2 to produce high-value chemicals like high-energy-density hydrocarbons, there have been few reports on the production of propane (C3H8), which requires carbon chain elongation and protonation. A rationally designed 0D/2D hybrid Cu2O anchored-Ti3C2Tx MXene catalyst (Cu2O/MXene) is demonstrated with efficient CO2RR activity in an aqueous electrolyte to produce C3H8. As a result, a significantly high Faradaic efficiency (FE) of 3.3% is achieved for the synthesis of C3H8 via the CO2RR with Cu2O/MXene, which is ≈26 times higher than that of Cu/MXene prepared by the same hydrothermal process without NH4OH solution. Based on in-situ attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and density functional theory (DFT) calculations, it is proposed that the significant electrocatalytic conversion originated from the synergistic behavior of the Cu2O nanoparticles, which bound the *C2 intermediates, and the MXene that bound the *CO coupling to the C3 intermediate. The results disclose that the rationally designed MXene-based hybrid catalyst facilitates multi-carbon coupling as well as protonation, thereby manipulating the CO2RR pathway.
Collapse
Affiliation(s)
- Jun Young Kim
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Won Tae Hong
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Thi Kim Cuong Phu
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Seong Chan Cho
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Byeongkyu Kim
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Unbeom Baeck
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Hyung‐Suk Oh
- Clean Energy Research CenterKorea Institute of Science and Technology (KIST)Hwarang‐ro 14‐gil 5, Seongbuk‐guSeoul02792Republic of Korea
| | - Jai Hyun Koh
- Clean Energy Research CenterKorea Institute of Science and Technology (KIST)Hwarang‐ro 14‐gil 5, Seongbuk‐guSeoul02792Republic of Korea
| | - Xu Yu
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002P. R. China
| | - Chang Hyuck Choi
- Department of ChemistryPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- Institute of Convergence Research and Education in Advanced Technology (I‐CREATE)Yonsei UniversitySeoul03722Republic of Korea
| | - Jongwook Park
- Integrated EngineeringDepartment of Chemical EngineeringKyung Hee UniversityGyeonggi17104South Korea
| | - Sang Uck Lee
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Chan‐Hwa Chung
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Jung Kyu Kim
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
- SKKU Advanced Institute of Nano Technology (SAINT)Sungkyunkwan University2066 Seobu‐roSuwon16419Republic of Korea
| |
Collapse
|
4
|
Jiang X, Ke L, Zhao K, Yan X, Wang H, Cao X, Liu Y, Li L, Sun Y, Wang Z, Dang D, Yan N. Integrating hydrogen utilization in CO 2 electrolysis with reduced energy loss. Nat Commun 2024; 15:1427. [PMID: 38365776 PMCID: PMC10873292 DOI: 10.1038/s41467-024-45787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
Electrochemical carbon dioxide reduction reaction using sustainable energy is a promising approach of synthesizing chemicals and fuels, yet is highly energy intensive. The oxygen evolution reaction is particularly problematic, which is kinetically sluggish and causes anodic carbon loss. In this context, we couple CO2 electrolysis with hydrogen oxidation reaction in a single electrochemical cell. A Ni(OH)2/NiOOH mediator is used to fully suppress the anodic carbon loss and hydrogen oxidation catalyst poisoning by migrated reaction products. This cell is highly flexible in producing either gaseous (CO) or soluble (formate) products with high selectivity (up to 95.3%) and stability (>100 h) at voltages below 0.9 V (50 mA cm-2). Importantly, thanks to the "transferred" oxygen evolution reaction to a water electrolyzer with thermodynamically and kinetically favored reaction conditions, the total polarization loss and energy consumption of our H2-integrated CO2 reduction reaction, including those for hydrogen generation, are reduced up to 22% and 42%, respectively. This work demonstrates the opportunity of combining CO2 electrolysis with the hydrogen economy, paving the way to the possible integration of various emerging energy conversion and storage approaches for improved energy/cost effectiveness.
Collapse
Affiliation(s)
- Xiaoyi Jiang
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Le Ke
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Kai Zhao
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaoyu Yan
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Hongbo Wang
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Xiaojuan Cao
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yuchen Liu
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Lingjiao Li
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Yifei Sun
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Zhiping Wang
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Dai Dang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ning Yan
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China.
| |
Collapse
|
5
|
Li CF, Guo RT, Zhang ZR, Wu T, Pan WG. Converting CO 2 into Value-Added Products by Cu 2 O-Based Catalysts: From Photocatalysis, Electrocatalysis to Photoelectrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207875. [PMID: 36772913 DOI: 10.1002/smll.202207875] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Indexed: 05/11/2023]
Abstract
Converting CO2 into value-added products by photocatalysis, electrocatalysis, and photoelectrocatalysis is a promising method to alleviate the global environmental problems and energy crisis. Among the semiconductor materials applied in CO2 catalytic reduction, Cu2 O has the advantages of abundant reserves, low price and environmental friendliness. Moreover, Cu2 O has unique adsorption and activation properties for CO2 , which is conducive to the generation of C2+ products through CC coupling. This review introduces the basic principles of CO2 reduction and summarizes the pathways for the generation of C1 , C2 , and C2+ products. The factors affecting CO2 reduction performance are further discussed from the perspective of the reaction environment, medium, and novel reactor design. Then, the properties of Cu2 O-based catalysts in CO2 reduction are summarized and several optimization strategies to enhance their stability and redox capacity are discussed. Subsequently, the application of Cu2 O-based catalysts in photocatalytic, electrocatalytic, and photoelectrocatalytic CO2 reduction is described. Finally, the opportunities, challenges and several research directions of Cu2 O-based catalysts in the field of CO2 catalytic reduction are presented, which is guidance for its wide application in the energy and environmental fields is provided.
Collapse
Affiliation(s)
- Chu-Fan Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
| | - Zhen-Rui Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Tong Wu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
| |
Collapse
|
6
|
Liu Y, Liu H, Wang C, Wang Y, Lu J, Wang H. Reconstructed Cu/Cu2O(I) catalyst for selective electroreduction of CO2 to C2+ products. Electrochem commun 2023. [DOI: 10.1016/j.elecom.2023.107474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|
7
|
Jana A, Snyder SW, Crumlin EJ, Qian J. Integrated carbon capture and conversion: A review on C 2+ product mechanisms and mechanism-guided strategies. Front Chem 2023; 11:1135829. [PMID: 36874072 PMCID: PMC9978511 DOI: 10.3389/fchem.2023.1135829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
The need to reduce atmospheric CO2 concentrations necessitates CO2 capture technologies for conversion into stable products or long-term storage. A single pot solution that simultaneously captures and converts CO2 could minimize additional costs and energy demands associated with CO2 transport, compression, and transient storage. While a variety of reduction products exist, currently, only conversion to C2+ products including ethanol and ethylene are economically advantageous. Cu-based catalysts have the best-known performance for CO2 electroreduction to C2+ products. Metal Organic Frameworks (MOFs) are touted for their carbon capture capacity. Thus, integrated Cu-based MOFs could be an ideal candidate for the one-pot capture and conversion. In this paper, we review Cu-based MOFs and MOF derivatives that have been used to synthesize C2+ products with the objective of understanding the mechanisms that enable synergistic capture and conversion. Furthermore, we discuss strategies based on the mechanistic insights that can be used to further enhance production. Finally, we discuss some of the challenges hindering widespread use of Cu-based MOFs and MOF derivatives along with possible solutions to overcome the challenges.
Collapse
Affiliation(s)
- Asmita Jana
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Seth W Snyder
- Energy & Environment S&T, Idaho National Laboratory, Idaho Falls, ID, United States
| | - Ethan J Crumlin
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jin Qian
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
8
|
2D MOFs and their derivatives for electrocatalytic applications: Recent advances and new challenges. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
9
|
The prospects for radiation technology in mitigating carbon footprint. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Marcos-Madrazo A, Casado-Coterillo C, Iniesta J, Irabien A. Use of Chitosan as Copper Binder in the Continuous Electrochemical Reduction of CO 2 to Ethylene in Alkaline Medium. MEMBRANES 2022; 12:783. [PMID: 36005698 PMCID: PMC9412364 DOI: 10.3390/membranes12080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
This work explores the potential of novel renewable materials in electrode fabrication for the electrochemical conversion of carbon dioxide (CO2) to ethylene in alkaline media. In this regard, the use of the renewable chitosan (CS) biopolymer as ion-exchange binder of the copper (Cu) electrocatalyst nanoparticles (NPs) is compared with commercial anion-exchange binders Sustainion and Fumion on the fabrication of gas diffusion electrodes (GDEs) for the electrochemical reduction of carbon dioxide (CO2R) in an alkaline medium. They were tested in membrane electrode assemblies (MEAs), where selectivity to ethylene (C2H4) increased when using the Cu:CS GDE compared to the Cu:Sustainion and Cu:Fumion GDEs, respectively, with a Faradaic efficiency (FE) of 93.7% at 10 mA cm-2 and a cell potential of -1.9 V, with a C2H4 production rate of 420 µmol m-2 s-1 for the Cu:CS GDE. Upon increasing current density to 90 mA cm-2, however, the production rate of the Cu:CS GDE rose to 509 µmol/m2s but the FE dropped to 69% due to increasing hydrogen evolution reaction (HER) competition. The control of mass transport limitations by tuning up the membrane overlayer properties in membrane coated electrodes (MCE) prepared by coating a CS-based membrane over the Cu:CS GDE enhanced its selectivity to C2H4 to a FE of 98% at 10 mA cm-2 with negligible competing HER. The concentration of carbon monoxide was below the experimental detection limit irrespective of the current density, with no CO2 crossover to the anodic compartment. This study suggests there may be potential in sustainable alernatives to fossil-based or perfluorinated materials in ion-exchange membrane and electrode fabrication, which constitute a step forward towards decarbonization in the circular economy perspective.
Collapse
Affiliation(s)
- Aitor Marcos-Madrazo
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. Los Castros s/n, 39005 Santander, Spain
| | - Clara Casado-Coterillo
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. Los Castros s/n, 39005 Santander, Spain
| | - Jesús Iniesta
- Department of Physical Chemistry, Institute of Electrochemistry, Universidad de Alicante, Av. Raspeig s/n, 03080 Alicante, Spain
| | - Angel Irabien
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. Los Castros s/n, 39005 Santander, Spain
| |
Collapse
|
11
|
Kang X, Fu G, Fu XZ, Luo JL. Copper-based metal-organic frameworks for electrochemical reduction of CO2. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|