1
|
Liang R, Wang S, Xia Y, Wu L, Huang R, He Z. Frustrated Lewis pair boosting photocatalytic antibacterial activity on PDI-bridged bimetallic UiO-66-NH 2. Dalton Trans 2023; 52:6813-6822. [PMID: 37133849 DOI: 10.1039/d3dt00788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Designing frustrated Lewis pair (FLP)-structured photocatalysts is a new challenge in catalysis. In particular, the relationship between the active sites and photocatalytic charge transport mechanism over FLP-structured photocatalysts is still ill-defined. In this study, a novel perylene-3,4,9,10-tetracarboxylic diimide/UiO-66(Ti/Zr)-NH2 (denoted as PDI/TUZr) photocatalyst is successfully constructed using an ammoniation process. The PDI/TUZr heterojunction is equipped with a unique "Zr/Ti SBUs-ligand-PDI" FLP structure and exhibits remarkable catalytic FLP properties. In this "Zr/Ti SBUs-ligand-PDI" structure, the Zr/Ti bimetal centers and PDI serve as Lewis acid and base sites, respectively, and the C-N chemical bond provides a channel for electron transmission, and a bimetallic system facilitates electron transfer from excited ligand to Zr/Ti-SBUs nodes. These superior microstructural designs cooperate to promote substrate activation for photocatalytic antibacterial reactions. Accordingly, 2.2-fold enhancement is achieved in visible photocatalytic antibacterial activity on Staphylococcus aureus for 4%PDI/0.2TUZr composite compared with unadorned UZr. This study provides insights into the formation and carrier transfer behaviors of solid FLP on MOFs and illustrates a rational strategy for the construction of highly efficient photocatalysts.
Collapse
Affiliation(s)
- Ruowen Liang
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, P. R. China.
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, P. R. China
| | - Shihui Wang
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, P. R. China.
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, P. R. China
| | - Yuzhou Xia
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, P. R. China.
| | - Ling Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, P. R. China
| | - Renkun Huang
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, P. R. China.
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, P. R. China
| | - Zhoujun He
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, P. R. China.
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, P. R. China
| |
Collapse
|
2
|
Chen J, Abazari R, Adegoke KA, Maxakato NW, Bello OS, Tahir M, Tasleem S, Sanati S, Kirillov AM, Zhou Y. Metal–organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214664] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Fu Q, Sun B, Fan J, Wang M, Sun X, Waterhouse GIN, Wu P, Ai S. Mixed matrix of MOF@COF hybrids for enrichment and determination of phenoxy carboxylic acids in water and vegetables. Food Chem 2022; 371:131090. [PMID: 34537617 DOI: 10.1016/j.foodchem.2021.131090] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/29/2021] [Accepted: 09/06/2021] [Indexed: 01/14/2023]
Abstract
A novel mixed matrix of MOF@COF hybrid was firstly formed by coating of hexahedral cage structure MOF with lightweight porous COF, and applied in dispersive solid-phase extraction of the phenoxy carboxylic acids (PCAs) from water and vegetable samples. Combined with liquid chromatography-tandem mass spectrometry, an excellent method with low limits of detection (0.69-1.79 ng·L-1/0.002-0.006 ng·g-1), good reproducibility (1.32%-7.02%/1.81%-6.71%), and excellent linearities (10-1000 ng·L-1, R ≥ 0.9955/0.04-50 ng·g-1, R ≥ 0.9966) was established. The adsorption mechanisms deduced that the π-π interaction, hydrophobic effects, hydrogen bond, and halogen bond may promote the excellent adsorption of the PCAs. Finally, the applicability of the method was verified by spiking four kinds of water and vegetable samples with PCAs, and satisfying recoveries were obtained (between 83.3% and 104.9%).
Collapse
Affiliation(s)
- Quanbin Fu
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, PR China; College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, PR China
| | - Bingbing Sun
- Bio-Organic Chemistry, Institute of Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Jun Fan
- Weifang Inspection and Testing Center, Weifang 261000, PR China
| | - Minglin Wang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, PR China
| | - Xin Sun
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, PR China.
| | - Geoffrey I N Waterhouse
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Peng Wu
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, PR China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|