1
|
Zhu T, Xu Y, Li Z, He J, Yuan X, Qian D, Chang T, Lu L, Chi B, Guo K. Cholinium Pyridinolate Ionic Pair-Catalyzed Fixation of CO 2 into Cyclic Carbonates. J Org Chem 2024. [PMID: 38787343 DOI: 10.1021/acs.joc.3c02609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A halide-free ionic pair organocatalyst was proposed for the cycloaddition of CO2 into epoxide reactions. Cholinium pyridinolate ionic pairs with three different substitution positions were designed. Under conditions of temperature of 120 °C, pressure of 1 MPa CO2, and catalyst loading of 5 mol %, the optimal catalyst cholinium 4-pyridinolate ([Ch]+[4-OP]-) was employed. After a reaction time of 12 h, styrene oxide was successfully converted into the corresponding cyclic carbonate, and its selectivity was improved to 90%. A series of terminal epoxides were converted into cyclic carbonates within 12 h, with yields ranging from 80 to 99%. The proposed mechanism was verified by 1H NMR and 13C NMR titrations. Cholinium cations act as a hydrogen bond donor to activate epoxides, and pyridinolate anions combine with carbon dioxide to form intermediate carbonate anions that attack epoxides as nucleophiles and lead to ring opening. In summary, a halide-free ionic pair organocatalyst was designed and the catalytic mechanism in the cycloaddition of CO2 into epoxides reactions was proposed.
Collapse
Affiliation(s)
- Tianyu Zhu
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Yue Xu
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Zhenjiang Li
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Jun He
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Xin Yuan
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Dong Qian
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Tong Chang
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Longlin Lu
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kai Guo
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| |
Collapse
|
2
|
Du X, Liu Z, Li Z, Yuan X, Li C, Zhang M, Zhang Z, Hu X, Guo K. Aminocyclopropenium as a novel hydrogen bonding organocatalyst for cycloaddition of carbon disulfide and epoxide to prepare cyclic dithiocarbonate. RSC Adv 2024; 14:10378-10389. [PMID: 38567344 PMCID: PMC10985464 DOI: 10.1039/d4ra00937a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
The smallest Hückel aromatic ring cyclopropenium substituted by electron-donating C-amino groups produced a aminocyclopropenium electron-rich cation. A bifunctional aminocyclopropenium halide catalyst installed with bis-(hydroxyethyl) functions on the amino group was then designed. A typical (diethanolamino)cyclopropenium halide catalyst C5·I was screened optimally for the cycloaddition of carbon disulfide into an epoxide to produce cyclic dithiocarbonate with an excellent conversion (95%) and high selectivity (92%). The electrostatic enhancement of alkyl C-H HBD capability was implemented via vicinal positive charges on the cyclopropenium core, and the acidity of the terminal O-H hydrogen proton increased by intramolecular H-bonding between the two hydroxy groups on the diethanolamino group (O-H⋯O-H). Then, a hybrid H-bond donor comprising enhanced alkyl C-H and hydroxy O-H was formed. The hybrid HBD offered by aminocyclopropenium was vital in activating the epoxide and stabilizing the intermediate, resulting in reduced O/S scrambling. Moreover, weakly coordinated iodide anion served as a nucleophilic reagent to open the ring of the epoxide. The cooperative catalytic mechanism of the HBD cation and halide anion was supported by NMR titrations and control experiments. Eleven epoxides with various substituents were converted into the corresponding cyclic thiocarbonate with high conversion and selectivity under mild conditions (25 °C, 6 h) without a solvent. The cycloaddition of carbon disulfide with epoxides catalyzed by aminocyclopropenium developed a new working model for hydrogen bonding organocatalysis.
Collapse
Affiliation(s)
- Xinru Du
- College of Materials Science and Engineering, Nanjing Tech University 30 Puzhu Road South Nanjing 211816 China
| | - Ziqi Liu
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University 30 Puzhu Road South Nanjing 211816 China
| | - Zhenjiang Li
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University 30 Puzhu Road South Nanjing 211816 China
| | - Xin Yuan
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University 30 Puzhu Road South Nanjing 211816 China
| | - Chunyu Li
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University 30 Puzhu Road South Nanjing 211816 China
| | - Min Zhang
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University 30 Puzhu Road South Nanjing 211816 China
| | - Zhihao Zhang
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University 30 Puzhu Road South Nanjing 211816 China
| | - Xin Hu
- College of Materials Science and Engineering, Nanjing Tech University 30 Puzhu Road South Nanjing 211816 China
| | - Kai Guo
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University 30 Puzhu Road South Nanjing 211816 China
| |
Collapse
|
3
|
Li Y, Zhao C, Wang Z, Zeng Y. Halogen Bond Catalysis: A Physical Chemistry Perspective. J Phys Chem A 2024; 128:507-527. [PMID: 38214658 DOI: 10.1021/acs.jpca.3c06363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
As important noncovalent interactions, halogen bonds have been widely used in material science, supramolecular chemistry, medicinal chemistry, organocatalysis, and other fields. In the past 15 years, halogen bond catalysis has become a developed field in organocatalysis for the catalysts' advantages of being environmentally friendly, inexpensive, and recyclable. Halogen bonds can induce various organic reactions, and halogen bond catalysis has become a powerful alternative to the fully explored hydrogen bond catalysis. From a physical chemistry view, this perspective provides an overview of the latest progress and key examples of halogen bond catalysis via activation of the lone pair systems of organic functional group, π systems, and metal complexes. The research progresses in halogen bond catalysis by our group were also introduced.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Chang Zhao
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhuo Wang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
4
|
Aliyeva V, Paninho AB, Nunes AVM, Karmakar A, Gurbanov AV, Rutigliano AR, Gallo E, Mahmudov KT, Pombeiro AJL. Halogen Bonding in the Decoration of Secondary Coordination Sphere of Zinc(II) and Cadmium(II) Complexes: Catalytic Application in Cycloaddition Reaction of CO 2 with Epoxides. ACS OMEGA 2023; 8:42290-42300. [PMID: 38024759 PMCID: PMC10652379 DOI: 10.1021/acsomega.3c04262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023]
Abstract
Three new zinc(II) complexes [Zn(H2L3)2(H2O)3] (Zn2), [Zn(H3L2a)(H2O)3]n (Zn3) (H3L2a = 2,4-diiodo-5-(2-(2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)hydrazineyl)isophthalate) and [Zn(HL4)(DMF)(H2O)]n (Zn4) were synthesized by the reaction of Zn(II) salts with 5-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl) isophthalic acid (H3L3), 2,4,6-triiodo-5-(2-(2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)hydrazineyl) isophthalic acid (H5L2) (in the presence of NH2OH·HCl) and 5-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)-2,4,6-triiodoisophthalic acid (H3L4), respectively. According to the X-ray structural analysis, the intramolecular resonance-assisted hydrogen bond ring remains intact, with N···O distances of 2.562(5) and 2.573(5) Å in Zn2, 2.603(6) Å in Zn3, and 2.563(8) Å in Zn4. In the crystal packing of Zn3, the cooperation of I···O and I···I types of halogen bonds between tectons leads to a one-dimensional supramolecular polymer, while I···O interactions aggregate 1D chains of coordination polymer Zn4. These new complexes (Zn2, Zn3, and Zn4) and known [Zn(H3L1)(H2O)2]n (Zn1) (H3L1 = 5-(2-(2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene) hydrazineyl)isophthalate), {[Zn(H3L1)(H2O)3]·3H2O}n (Zn5), [Cd(H3L1)(H2O)2]n (Cd1), {[Cd(HL3)(H2O)2(DMF)]·H2O}n (Cd2), [Cd(H3L3)]n (Cd-3), {[Cd2(μ-H2O)2(μ-H2L4)2(H2L4)2]·2H2O}n (Cd4), and {[Cd(H3L1)(H2O)3]·4H2O}n (Cd5) were tested as catalysts in the cycloaddition reaction of CO2 with epoxides in the presence of tetrabutylammonium halides as the cocatalyst. The halogen-bonded catalyst Zn4 is the most efficient one in the presence of tetrabutylammonium bromide by affording a high yield (85-99%) of cyclic carbonates under solvent-free conditions after 48 h at 40 bar and 80 °C.
Collapse
Affiliation(s)
- Vusala
A. Aliyeva
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Ana B. Paninho
- LAQV-REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - Ana V. M. Nunes
- LAQV-REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - Anirban Karmakar
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Atash V. Gurbanov
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Excellence
Center, Baku State University, Z. Xalilov Str. 23, Az, Baku 1148, Azerbaijan
| | - Arianna R. Rutigliano
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Department
of Chemistry, University of Milan, Via Golgi 19, Milan I-20133, Italy
| | - Emma Gallo
- Department
of Chemistry, University of Milan, Via Golgi 19, Milan I-20133, Italy
| | - Kamran T. Mahmudov
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Excellence
Center, Baku State University, Z. Xalilov Str. 23, Az, Baku 1148, Azerbaijan
| | - Armando J. L. Pombeiro
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| |
Collapse
|