1
|
Zhou C, Zhang J, Fu Y, Dai H. Recent Advances in the Reverse Water-Gas Conversion Reaction. Molecules 2023; 28:7657. [PMID: 38005379 PMCID: PMC10674781 DOI: 10.3390/molecules28227657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The increase in carbon dioxide emissions has significantly impacted human society and the global environment. As carbon dioxide is the most abundant and cheap C1 resource, the conversion and utilization of carbon dioxide have received extensive attention from researchers. Among the many carbon dioxide conversion and utilization methods, the reverse water-gas conversion (RWGS) reaction is considered one of the most effective. This review discusses the research progress made in RWGS with various heterogeneous metal catalyst types, covering topics such as catalyst performance, thermodynamic analysis, kinetics and reaction mechanisms, and catalyst design and preparation, and suggests future research on RWGS heterogeneous catalysts.
Collapse
Affiliation(s)
- Changjian Zhou
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (C.Z.)
| | - Jiahao Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (C.Z.)
| | - Yuqing Fu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (C.Z.)
| | - Hui Dai
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
2
|
Kang K, Kakihara S, Higo T, Sampei H, Saegusa K, Sekine Y. Equilibrium unconstrained low-temperature CO 2 conversion on doped gallium oxides by chemical looping. Chem Commun (Camb) 2023; 59:11061-11064. [PMID: 37650129 DOI: 10.1039/d3cc02399k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Reverse water gas shift (RWGS) can convert CO2 into CO by using renewable hydrogen. However, this important reaction is endothermic and equilibrium constrained, and thus traditionally performed at 900 K or higher temperatures using solid catalysts. In this work, we found that RWGS can be carried out at low temperatures without equilibrium constraints using a redox method called chemical looping (CL), which uses the reduction and oxidation of solid oxide surfaces. When using our developed MGa2Ox (M = Ni, Cu, Co) materials, the reaction can proceed with almost 100% CO2 conversion even at temperatures as low as 673 K. This allows RWGS to proceed without equilibrium constraints at low temperatures and greatly decreases the cost for the separation of unreacted CO2 and produced CO. Our novel gallium-based material is the first material that can achieve high conversion rates at low temperatures in reverse water gas shift using chemical looping (RWGS-CL). Ni outperformed Cu and Co as a dopant, and the redox mechanism of NiGa2Ox is a phase change due to the redox of Ga during the RWGS-CL process. This major finding is a big step forward for the effective utilization of CO2 in the future.
Collapse
Affiliation(s)
- Keke Kang
- Department of Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan.
| | - Sota Kakihara
- Department of Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan.
| | - Takuma Higo
- Department of Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan.
| | - Hiroshi Sampei
- Department of Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan.
| | - Koki Saegusa
- Department of Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan.
| | - Yasushi Sekine
- Department of Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan.
| |
Collapse
|
3
|
Iwama R, Kaneko H. Integration of Materials and Process Informatics: Metal Oxide and Process Design for CO 2 Reduction. ACS OMEGA 2022; 7:46922-46934. [PMID: 36570310 PMCID: PMC9773958 DOI: 10.1021/acsomega.2c06008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
In materials informatics, a mathematical model constructed between the synthesis conditions of materials and their properties and activities is used to design synthesis conditions in which the properties and activities have the desired values. In process informatics, a mathematical model constructed between the process conditions for devices and industrial plants and product quality and cost is used to design process conditions that can produce the desired products. In this study, we propose a method to simultaneously design the synthesis conditions of materials and the process conditions of products by integrating materials and process informatics in the reverse water-gas shift chemical looping (RWGS-CL) reaction, which produces CO from CO2 using metal oxides via the RWGS-CL process. Four methods: Gaussian process regression-Bayesian optimization (GPR-BO), Gaussian mixture regression-Bayesian optimization (GMR-BO), GMR-BO-multiple, and GPR-GMR-BO were investigated for the optimization. All four proposed methods outperformed the results of a random search. GPR-BO achieved the highest performance and proposed 27 promising candidates for the synthesis conditions and metal oxides. The selected metals did not include Cu and Ga, which tended to have high predicted CO2 and H2 conversion rates, but Fe and La, which had slightly lower predicted CO2 and H2 conversion rates. These results indicate that a combination of metal oxides with lower predicted CO2 and H2 conversion rates and optimized process conditions was important for the optimization of both materials and processes, which was achieved by integrating materials and process informatics via the proposed method. Thus, we confirmed that it is possible to simultaneously optimize the combination of metals, composition ratios, synthesis conditions of the material or the metal oxide, and the process conditions using experimental datasets, process simulations, and machine learning, such as GPR, GMR, BO, and multiobjective optimization with a genetic algorithm.
Collapse
|
4
|
Wu J, Ye R, Xu DJ, Wan L, Reina TR, Sun H, Ni Y, Zhou ZF, Deng X. Emerging natural and tailored perovskite-type mixed oxides–based catalysts for CO2 conversions. Front Chem 2022; 10:961355. [PMID: 35991607 PMCID: PMC9388861 DOI: 10.3389/fchem.2022.961355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid economic and societal development have led to unprecedented energy demand and consumption resulting in the harmful emission of pollutants. Hence, the conversion of greenhouse gases into valuable chemicals and fuels has become an urgent challenge for the scientific community. In recent decades, perovskite-type mixed oxide-based catalysts have attracted significant attention as efficient CO2 conversion catalysts due to the characteristics of both reversible oxygen storage capacity and stable structure compared to traditional oxide-supported catalysts. In this review, we hand over a comprehensive overview of the research for CO2 conversion by these emerging perovskite-type mixed oxide-based catalysts. Three main CO2 conversions, namely reverse water gas shift reaction, CO2 methanation, and CO2 reforming of methane have been introduced over perovskite-type mixed oxide-based catalysts and their reaction mechanisms. Different approaches for promoting activity and resisting carbon deposition have also been discussed, involving increased oxygen vacancies, enhanced dispersion of active metal, and fine-tuning strong metal-support interactions. Finally, the current challenges are mooted, and we have proposed future research prospects in this field to inspire more sensational breakthroughs in the material and environment fields.
Collapse
Affiliation(s)
- Juan Wu
- Institute of Cotton, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Runping Ye
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
- *Correspondence: Runping Ye, ; Zhang-Feng Zhou, ; Xiaonan Deng,
| | - Dong-Jie Xu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Lingzhong Wan
- Institute of Cotton, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Tomas Ramirez Reina
- Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
- Department of Inorganic Chemistry and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain
| | - Hui Sun
- Institute of Cotton, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Ying Ni
- Institute of Cotton, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Zhang-Feng Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- *Correspondence: Runping Ye, ; Zhang-Feng Zhou, ; Xiaonan Deng,
| | - Xiaonan Deng
- Institute of Cotton, Anhui Academy of Agricultural Sciences, Hefei, China
- *Correspondence: Runping Ye, ; Zhang-Feng Zhou, ; Xiaonan Deng,
| |
Collapse
|
5
|
Catalytic pyrolysis of HDPE over WOx/Al2O3: Effect of tungsten content on the acidity and catalytic performance. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|