1
|
Sun W, Liu J, Zha X, Sun G, Wang Y. Triple microenvironment modulation of zeolite imidazolate framework (ZIF) nanocages for boosting dopamine electrocatalysis. J Colloid Interface Sci 2024; 654:1-12. [PMID: 37832230 DOI: 10.1016/j.jcis.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Multiple microenvironmental modulation of zeolite imidazole framework-8 (ZIF-8) is expected to solve the long-term intractable problem of low sensitivity in electrochemical sensing. Herein, the metal phthalocyanines with different central ions (PcM, M = Fe, Co, Ni and Cu) were introduced into ZIF-8 by in-situ synthesis method. Then, the hollow composite nanomaterials, HZIF-8/PcFe and HZIF-8@PcFe (HZIF-8, i.e., hollow ZIF-8) with different TA (tannic acid) coating thicknesses (∼11 nm and ∼33 nm) were successfully fabricated by carefully designed polyphenol-mediated modulation (PMM) strategy. Next, the HZIF-8@PcFe electrochemical sensor was constructed for selective and sensitive analysis by selecting dopamine (DA) as the analyte. The TA coating (superhydrophilic state), PcFe (redox properties) and hollow MOF cavity (faster mass transfer) was used as the triple microenvironment modulation of ZIF-8 to enhance the electrocatalytic performance. Under the optimum conditions (pH = 8.0), the linear correlations of 0.3 to 200 μmol/L was obtained for the peak current response, with a detection limit of 0.1 μmol/L (S/N = 3, i.e., Signal/Noise = 3). Meanwhile, the HZIF-8@PcFe electrochemical sensor exhibited excellent interference selectivity, reproducibility and stability, which enabled it to detect low abundance DA in real samples. And the F-test (homogeneity test of variance) and t-test (student's t test) statistical analyses were employed to enhance the accuracy of the actual samples' detection. This work will enlighten researchers working in the field of porous framework composites and open up new paths for the development of hollow MOFs hybrid materials in electrochemical sensing.
Collapse
Affiliation(s)
- Wang Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Junyan Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Xiaoqian Zha
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Guorong Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
2
|
Sun W, Liu J, Chu H, Wang Y. Controllable assembly of hollow interpenetrated zeolite imidazole framework nanocomposite for dopamine charge collection. Mikrochim Acta 2023; 191:48. [PMID: 38141091 DOI: 10.1007/s00604-023-06137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
The synergistic armor-etching (SAE) approach was proposed using natural organic weak acid (tannic acid, i.e., TA) for the controllable assembly of hollow and interpenetrated HZIF-8@MWCNTs hybrid nanomaterial (ZIF-8, zeolitic imidazolate framework-8; MWCNTs, multi-walled carbon nanotubes), which exhibited highly ordered crystal structure and unique morphological characteristics. The SAE strategy not only can rapidly etch solid ZIF- material into a hollow structure (~ 10 min), but also form the TA shell (~ 33 nm) on its surface. Then, the HZIF-8@MWCNTs electrochemical sensor was constructed for selective and sensitive detection of the target molecule (dopamine, DA). A sequence of studies indicated that the fabricated TA coating was capable of promoting the spread of DA into the reactive centers of hollow MOF and MWCNTs, which exhibited outstanding electroanalytical characteristics through the synergistic effect. The DPV oxidation peak of DA was strongest at 50 mV vs. Ag/AgCl reference electrode. Under the optimal conditions, there are two linear dynamic ranges of current response of 0.01 ~ 10 and 10 ~ 550 µmol L- 1 with a detection limit of 0.003 µmol·L- 1 (S/N = 3). Simultaneously, the HZIF-8@MWCNTs electrochemical sensor could detect low levels of DA in real products. The recoveries of the actual sample tests were between 98.2% and 102%, and the relative standard deviation (R.S.D.) of all studies was less than 3.0%. The statistical analyses (F-test and t-test) were employed to demonstrate the accuracy of method developed. This work will enlighten researchers operating in the domain of MOFs composites, accelerating the advancement of electrochemical sensing on the basis of hollow MOFs materials.
Collapse
Affiliation(s)
- Wang Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Junyan Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Huacong Chu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China.
| |
Collapse
|
3
|
Gumbo M, Makhubela BCE, Amombo Noa FM, Öhrström L, Al-Maythalony B, Mehlana G. Hydrogenation of Carbon Dioxide to Formate by Noble Metal Catalysts Supported on a Chemically Stable Lanthanum Rod-Metal-Organic Framework. Inorg Chem 2023. [PMID: 37256920 DOI: 10.1021/acs.inorgchem.3c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The conversion of carbon dioxide to formate is of great importance for hydrogen storage as well as being a step to access an array of olefins. Herein, we have prepared a JMS-5 metal-organic framework (MOF) using a bipyridyl dicarboxylate linker, with the molecular formula [La2(bpdc)3/2(dmf)2(OAc)3]·dmf. The MOF was functionalized by cyclometalation using Pd(II), Pt(II), Ru(II), Rh(III), and Ir(III) complexes. All metal catalysts supported on JMS-5 showed activity for CO2 hydrogenation to formate, with Rh(III)@JMS-5a and Ir(III)@JMS-5a yielding 4319 and 5473 TON, respectively. X-ray photoelectron spectroscopy of the most active catalyst Ir(III)@JMS-5a revealed that the iridium binding energies shifted to lower values, consistent with formation of Ir-H active species during catalysis. The transmission electron microscopy images of the recovered catalysts of Ir(III)@JMS-5a and Rh(III)@JMS-5a did not show any nanoparticles. This suggests that the catalytic activity observed was due to Ir(III) and Rh(III). The high activity displayed by Ir(III)@JMS-5a and Rh(III)@JMS-5a compared to using the Ir(III) and Rh(III) complexes on their own is attributed to the stabilization of the Ir(III) and Rh(III) on the nitrogen and carbon atom of the MOF backbone.
Collapse
Affiliation(s)
- Maureen Gumbo
- Department of Chemical Sciences, Faculty of Science and Technology, Midlands State University, Private Bag 9055, Senga Road, Gweru 263, Zimbabwe
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Kingsway Campus: C2 Lab 328, Auckland Park, Johannesburg 2006, South Africa
| | - Banothile C E Makhubela
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Kingsway Campus: C2 Lab 328, Auckland Park, Johannesburg 2006, South Africa
| | - Francoise M Amombo Noa
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Lars Öhrström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Bassem Al-Maythalony
- Materials Discovery Research Unit, Advanced Research Centre, Royal Scientific Society, Amman 11941, Jordan
| | - Gift Mehlana
- Department of Chemical Sciences, Faculty of Science and Technology, Midlands State University, Private Bag 9055, Senga Road, Gweru 263, Zimbabwe
| |
Collapse
|
4
|
Gumbo M, Makhubela BCE, Mehlana G. Two novel metal-organic frameworks functionalised with pentamethylcyclopentadienyl iridium(III) chloride for catalytic conversion of carbon dioxide to formate. Dalton Trans 2023; 52:6501-6514. [PMID: 37097114 DOI: 10.1039/d3dt00635b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Hydrogenation of CO2 to formate is a vital reaction, because formate is an excellent hydrogen carrier, which yields blue hydrogen. Blue hydrogen is comparatively cheaper and attractive as the world envisions the hydrogen economy. In this work, two isostructural lanthanide-based MOFs (JMS-6 and JMS-7 [Ln(bpdc)3/2(dmf)2(H2O)2]n) were prepared and used as support materials for molecular catalysts. The bipyridyl MOF backbone were functionalised using pentamethylcyclopentadienyl iridium(III) chloride to give Ir(III)@JMS-6a and Ir(III)@JMS-7a. XPS of the functionalised MOFs show downfield shifts in the N 1s binding energy indicating successful grafting of the complex to the MOF. Hydrogenation experiments in the presence of an organic base showed that the functionalised MOFs were active towards converting CO2 to formate. Ir(III)@JMS-6a and Ir(III)@JMS-7a exhibited the highest turnover numbers of 813 and 621 respectively. ICP-OES indicated insignificant leaching during catalysis. TEM images and XPS data of the recovered catalyst ruled out the presence of Ir(0), confirming that the activity observed was attributed to the molecular Iridium(III) centres.
Collapse
Affiliation(s)
- Maureen Gumbo
- Department of Chemical Sciences, Faculty of Science and Technology, Midlands State University, Private Bag 9055, Senga Road, Gweru, Zimbabwe.
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, Auckland Park, Kingsway Campus, 2006, South Africa
| | - Banothile C E Makhubela
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, Auckland Park, Kingsway Campus, 2006, South Africa
| | - Gift Mehlana
- Department of Chemical Sciences, Faculty of Science and Technology, Midlands State University, Private Bag 9055, Senga Road, Gweru, Zimbabwe.
| |
Collapse
|
5
|
Lu X, Song C, Qi X, Li D, Lin L. Confinement Effects in Well-Defined Metal-Organic Frameworks (MOFs) for Selective CO 2 Hydrogenation: A Review. Int J Mol Sci 2023; 24:ijms24044228. [PMID: 36835639 PMCID: PMC9959283 DOI: 10.3390/ijms24044228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 02/23/2023] Open
Abstract
Decarbonization has become an urgent affair to restrain global warming. CO2 hydrogenation coupled with H2 derived from water electrolysis is considered a promising route to mitigate the negative impact of carbon emission and also promote the application of hydrogen. It is of great significance to develop catalysts with excellent performance and large-scale implementation. In the past decades, metal-organic frameworks (MOFs) have been widely involved in the rational design of catalysts for CO2 hydrogenation due to their high surface areas, tunable porosities, well-ordered pore structures, and diversities in metals and functional groups. Confinement effects in MOFs or MOF-derived materials have been reported to promote the stability of CO2 hydrogenation catalysts, such as molecular complexes of immobilization effect, active sites in size effect, stabilization in the encapsulation effect, and electron transfer and interfacial catalysis in the synergistic effect. This review attempts to summarize the progress of MOF-based CO2 hydrogenation catalysts up to now, and demonstrate the synthetic strategies, unique features, and enhancement mechanisms compared with traditionally supported catalysts. Great emphasis will be placed on various confinement effects in CO2 hydrogenation. The challenges and opportunities in precise design, synthesis, and applications of MOF-confined catalysis for CO2 hydrogenation are also summarized.
Collapse
Affiliation(s)
- Xiaofei Lu
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Chuqiao Song
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xingyu Qi
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Duanxing Li
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Lili Lin
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence:
| |
Collapse
|
6
|
Becerra J, Nguyen DT, Nair Gopalakrishnan V, Do TO. Chemically Bonded Plasmonic Triazole-Functionalized Au/Zeolitic Imidazole Framework (ZIF-67) for Enhanced CO 2 Photoreduction. CHEMSUSCHEM 2022; 15:e202201535. [PMID: 36121437 DOI: 10.1002/cssc.202201535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The design of functionalized metallic nanoparticles is considered an emerging technique to ensure the interaction between metal and semiconductor material. In the literature, this interface interaction is mainly governed by electrostatic or van der Waals forces, limiting the injection of electrons under light irradiation. To enhance the transfer of electrons between two compounds, close contact or chemical bonding at the interface is required. Herein, a new approach was reported for the synthesis of chemically bonded plasmonic Au NPs/ZIF-67 nanocomposites. The structure of ZIF-67 was grown on the surface of functionalized plasmonic Au NPs using 1H-1,2,4-triazole-3-thiol as the capping agent, which acted as both stabilizer of Au nanoparticles and a molecular linker for ZIF-67 formation. As a result, the synthesized material exhibited outstanding photocatalytic CO2 reduction with a methanol production rate of 2.70 mmol h-1 g-1 cat under sunlight irradiation. This work emphasizes that the diligent use of capping agents, with suitable functional groups, could facilitate the formation of intimate heterostructure for enhanced photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Jorge Becerra
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, G1V0A6, Quebec, QC, Canada
| | - Duc-Trung Nguyen
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, G1V0A6, Quebec, QC, Canada
| | - Vishnu Nair Gopalakrishnan
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, G1V0A6, Quebec, QC, Canada
| | - Trong-On Do
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, G1V0A6, Quebec, QC, Canada
| |
Collapse
|
7
|
Abdelhamid HN. Removal of Carbon Dioxide using Zeolitic Imidazolate Frameworks: Adsorption and Conversion via Catalysis. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry Assiut University Assiut Egypt
- Proteomics Laboratory for Clinical Research and Materials Science, Department of Chemistry Assiut University Assiut Egypt
- Nanotechnology Research Centre (NTRC) The British University in Egypt Cairo Egypt
| |
Collapse
|