1
|
Muacevic A, Adler JR, Nachiappa Ganesh R. Cleistanthins A and B Ameliorate Testosterone-Induced Benign Prostatic Hyperplasia in Castrated Rats by Regulating Apoptosis and Cell Differentiation. Cureus 2022; 14:e32141. [PMID: 36601166 PMCID: PMC9805890 DOI: 10.7759/cureus.32141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 12/04/2022] Open
Abstract
Background The aging male population is at higher risk for benign prostatic hyperplasia (BPH) wherein increased proliferation of stromal and epithelial cells of the prostate is observed. In this study, we investigated the effect of cleistanthins A and B on the inhibition of testosterone-induced BPH in castrated rats. Methodology Male Wistar rats were divided into eight groups (n = 6) and surgical castration was performed. BPH was induced by the administration of testosterone propionate in corn oil at 5 mg/kg for four weeks. The control group received corn oil, and the model group received testosterone propionate. The standard treatment group received finasteride orally along with testosterone. Cleistanthins A and B at 0.3, 1, and 3 mg/kg were administered by oral gavage along with testosterone. After four weeks, rats were sacrificed, and prostates were weighed and assessed for histomorphological, inflammatory, apoptotic, and proliferative markers. Results Cleistanthins A and B decreased prostatic enlargement and histopathological abnormalities. Elevated serum dihydrotestosterone levels were lowered significantly in both the cleistanthin A and cleistanthin B groups compared to the BPH model group. Cleistanthins A and B significantly lowered the serum interleukin (IL)-1β and tumor necrosis factor-alpha inflammatory markers in the test groups. Western blot analysis revealed cleistanthin A downregulated the IL-6, signal transducer and activator of transcription 3/cyclin D1 signaling pathway. Both cleistanthins A and B upregulated the apoptotic markers caspase-3 and cleaved caspase-3, whereas the cell proliferation markers cyclin D1 and proliferating cell nuclear antigen were found to be downregulated. Conclusions Both cleistanthins A and B inhibited BPH in a rat model by apoptotic induction and impeded cell proliferation.
Collapse
|
2
|
Thiemeyer H, Taher L, Schille JT, Packeiser EM, Harder LK, Hewicker-Trautwein M, Brenig B, Schütz E, Beck J, Nolte I, Murua Escobar H. An RNA-Seq-Based Framework for Characterizing Canine Prostate Cancer and Prioritizing Clinically Relevant Biomarker Candidate Genes. Int J Mol Sci 2021; 22:11481. [PMID: 34768937 PMCID: PMC8584104 DOI: 10.3390/ijms222111481] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 01/01/2023] Open
Abstract
Prostate cancer (PCa) in dogs is a highly malignant disease akin to its human counterpart. In contrast to the situation in humans, multi-gene approaches facilitating risk stratification of canine PCa are barely established. The aims of this study were the characterization of the transcriptional landscape of canine PCa and the identification of diagnostic, prognostic and/or therapeutic biomarkers through a multi-step screening approach. RNA-Sequencing of ten malignant tissues and fine-needle aspirations (FNA), and 14 nonmalignant tissues and FNAs was performed to find differentially expressed genes (DEGs) and deregulated pathways. The 4098 observed DEGs were involved in 49 pathways. These 49 pathways could be grouped into five superpathways summarizing the hallmarks of canine PCa: (i) inflammatory response and cytokines; (ii) regulation of the immune system and cell death; (iii) cell surface and PI3K signaling; (iv) cell cycle; and (v) phagosome and autophagy. Among the highly deregulated, moderately to strongly expressed DEGs that were members of one or more superpathways, 169 DEGs were listed in relevant databases and/or the literature and included members of the PCa pathway, oncogenes, prostate-specific genes, and druggable genes. These genes are novel and promising candidate diagnostic, prognostic and/or therapeutic canine PCa biomarkers.
Collapse
Affiliation(s)
- Heike Thiemeyer
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (H.T.); (J.T.S.); (E.-M.P.); (L.K.H.); (I.N.)
- Department of Hematology/Oncology/Palliative Care, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Leila Taher
- Institute of Biomedical Informatics, Graz University of Technology, 8010 Graz, Austria;
| | - Jan Torben Schille
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (H.T.); (J.T.S.); (E.-M.P.); (L.K.H.); (I.N.)
- Department of Hematology/Oncology/Palliative Care, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Eva-Maria Packeiser
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (H.T.); (J.T.S.); (E.-M.P.); (L.K.H.); (I.N.)
- Department of Hematology/Oncology/Palliative Care, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Lisa K. Harder
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (H.T.); (J.T.S.); (E.-M.P.); (L.K.H.); (I.N.)
| | - Marion Hewicker-Trautwein
- Institute of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany;
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, 37077 Göttingen, Germany;
| | - Ekkehard Schütz
- Chronix Biomedical GmbH, 37079 Göttingen, Germany; (E.S.); (J.B.)
| | - Julia Beck
- Chronix Biomedical GmbH, 37079 Göttingen, Germany; (E.S.); (J.B.)
| | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (H.T.); (J.T.S.); (E.-M.P.); (L.K.H.); (I.N.)
| | - Hugo Murua Escobar
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (H.T.); (J.T.S.); (E.-M.P.); (L.K.H.); (I.N.)
- Department of Hematology/Oncology/Palliative Care, Rostock University Medical Centre, 18057 Rostock, Germany
- Comprehensive Cancer Center Mecklenburg-Vorpommern (CCC-MV), Campus Rostock, University of Rostock, 18057 Rostock, Germany
| |
Collapse
|
3
|
Steroidogenic Enzyme and Steroid Receptor Expression in the Equine Accessory Sex Glands. Animals (Basel) 2021; 11:ani11082322. [PMID: 34438779 PMCID: PMC8388441 DOI: 10.3390/ani11082322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
The expression pattern and distribution of sex steroid receptors and steroidogenic enzymes during development of the equine accessory sex glands has not previously been described. We hypothesized that equine steroidogenic enzyme and sex steroid receptor expression is dependent on reproductive status. Accessory sex glands were harvested from mature stallions, pre-pubertal colts, geldings, and fetuses. Expression of mRNA for estrogen receptor 1 (ESR1), estrogen receptor 2 (ESR2), androgen receptor (AR), 3β-Hydroxysteroid dehydrogenase/Δ5-4 isomerase (3βHSD), P450,17α hydroxylase, 17-20 lyase (CYP17), and aromatase (CYP19) were quantified by RT-PCR, and protein localization of AR, ER-α, ER-β, and 3βHSD were investigated by immunohistochemistry. Expression of AR, ESR2, CYP17, or CYP19 in the ampulla was not different across reproductive statuses (p > 0.1), while expression of ESR1 was higher in the ampulla of geldings and fetuses than those of stallions or colts (p < 0.05). AR, ESR1 and ESR2 expression were decreased in stallion vesicular glands compared to the fetus or gelding, while AR, ESR1, and CYP17 expression were decreased in the bulbourethral glands compared to other glands. ESR1 expression was increased in the prostate compared to the bulbourethral glands, and no differences were seen with CYP19 or 3β-HSD. In conclusion, sex steroid receptors are expressed in all equine male accessory sex glands in all stages of life, while the steroidogenic enzymes were weakly and variably expressed.
Collapse
|
4
|
Khodamoradi P, Amniattalab A, Alizadeh S. Overexpression of GDNF and FGF-1 in Canine Benign Prostatic Hyperplasia: Evidence for a Pathogenetic Role of Neural Growth Factor. J Comp Pathol 2021. [DOI: https://doi.org/10.1016/j.jcpa.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Khodamoradi P, Amniattalab A, Alizadeh S. Overexpression of GDNF and FGF-1 in Canine Benign Prostatic Hyperplasia: Evidence for a Pathogenetic Role of Neural Growth Factor. J Comp Pathol 2021; 182:43-53. [PMID: 33494907 DOI: 10.1016/j.jcpa.2020.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/02/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
Benign prostatic hyperplasia (BPH) is common in aged dogs, but the pathogenesis has not been clearly elucidated. A total of 33 male Iranian dogs of mixed breed and in three age groups (under 3 years [n = 10]; 3-6 years [n = 15]; over 6 years [n = 8]), were investigated. BPH was confirmed by ultrasonography and histopathology in 13 cases. The highest prevalence of BPH was in the 3-6 years age group (8/15; 53.3%). Examination of sections of prostate that had been stained with Masson's trichrome revealed that the intensity of stromal smooth muscle cell staining (P <0.05) and the number of fibroblasts (P = 0.002) were significantly increased in BPH compared with normal prostate glands. Prostate cells from dogs with BPH (n = 13) had a significantly higher intensity of cytoplasmic immunolabelling with antibodies against glial cell line-derived neurotrophic factor (GDNF), cytokeratin (CK) AE1/AE3, vimentin, fibroblast growth factor-1 (FGF-1) and prostate-specific antigen (PSA), compared with normal prostate glands (n = 20) (P = 0.001), except for PSA, which was negative in both normal and BPH affected prostates. The overexpression of GDNF and FGF-1 in stromal and epithelial cells of prostate glands of dogs with BPH suggests that GDNF has a paracrine or autocrine role in stimulating cellular proliferation. GDNF overexpression may also play a pathogenetic role in promoting chronic prostatitis and increasing fibrosis and the smooth muscle component of the prostate gland in BPH.
Collapse
Affiliation(s)
- Pouya Khodamoradi
- Department of Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Amir Amniattalab
- Department of Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.
| | - Siamak Alizadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| |
Collapse
|
6
|
Kobayashi PE, Rodrigues MM, Gartner F, Rema A, Fonseca-Alves CE, Laufer-Amorim R. Association between decreased expression of estrogen receptor alpha, androgen receptor and phosphatase and tensin homolog immunoexpression in the canine prostate. PESQUISA VETERINÁRIA BRASILEIRA 2019. [DOI: 10.1590/1678-5150-pvb-5699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
ABSTRACT: Canine prostate gland is a hormonal dependent organ and its imbalance of estrogen and androgen receptor expressions are directly associated with the development of different diseases. Due to the lack of information regarding the behavior of the aforementioned receptors in canine prostate cancer (PC), this study aimed to identify estrogen receptor alpha (ERα), androgen receptor (AR), Ki67 and phosphatase and tensin homolog (PTEN) protein expressions in canine PC by immunohistochemistry. We found nuclear expression of ERα and AR in the epithelial cells of normal canine samples and a loss of protein expression in PC samples. Normal samples showed Ki67 expression in a few basal cells and the PC samples showed the highest mean of positive cells (253.1). Canine prostate cancer showed a high proliferative index, which was associated with independence of hormonal actuation. PTEN showed positive nuclear and cytoplasmic expression in normal canine samples and a loss in PC. Loss of ERα, AR and PTEN indicated that canine PC exhibits the same immunohistochemical phenotype as in human patients with PC resistant to hormonal therapy. Therefore, canine PC should be considered as a model to study human PC resistant to hormonal therapy.
Collapse
|
7
|
Bongiovanni L, Caposano F, Romanucci M, Grieco V, Malatesta D, Brachelente C, Massimini M, Benazzi C, Thomas RE, Salda LD. Survivin and Sox9: Potential Stem Cell Markers in Canine Normal, Hyperplastic, and Neoplastic Canine Prostate. Vet Pathol 2018; 56:200-207. [PMID: 30131013 DOI: 10.1177/0300985818794161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Canine prostatic carcinoma is a relevant model for human prostatic carcinoma. Survivin is proposed as a biomarker of malignancy in human prostatic cancer. Sox9 is a stem cell marker required for prostate development and expressed in several adult tissues. The aims of the present study were to evaluate the patterns and expression levels of 2 putative stem cell markers, survivin and Sox9, in canine benign prostatic hyperplasia (BPH) and prostatic carcinoma to investigate their potential as stem cell markers. Immunohistochemistry with specific antibodies was performed on 3 samples of normal prostate gland, 18 samples of canine BPH, and 16 samples of prostatic carcinoma. The basal cell layer of normal and hyperplastic prostatic lobules had nuclear Sox9 immunolabeling and nuclear and rarely cytoplasmic survivin immunostaining, identifying them as potential stem cell markers. Significantly more frequent survivin and Sox9 expression (≥10% of nuclei) was observed in prostatic carcinoma as compared with BPH. The potential coexpression of survivin with Sox9, androgen receptor, and p63 was also investigated in selected BPH and prostatic carcinoma cases with immunofluorescence, and a partial colocalization was observed. Results indicate that Sox9 and survivin could be considered markers of stemness in canine prostate cells. Given its role in proliferation, cells in the basal cell layer with nuclear survivin expression are likely to be transit-amplifying cells that maintain some stem cell proprieties.
Collapse
Affiliation(s)
- Laura Bongiovanni
- 1 Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy.,2 Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | | | | | - Valeria Grieco
- 3 Department of Veterinary Science and Public Health, University of Milan, Milan, Italy
| | - Daniela Malatesta
- 1 Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Chiara Brachelente
- 4 Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | | | - Cinzia Benazzi
- 5 Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Rachel E Thomas
- 2 Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | | |
Collapse
|
8
|
Gonzaga ACR, Campolina-Silva GH, Werneck-Gomes H, Moura-Cordeiro JD, Santos LC, Mahecha GAB, Morais-Santos M, Oliveira CA. Profile of cell proliferation and apoptosis activated by the intrinsic and extrinsic pathways in the prostate of aging rats. Prostate 2017; 77:937-948. [PMID: 28480526 DOI: 10.1002/pros.23349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/06/2017] [Indexed: 11/08/2022]
Abstract
BACKGROUND Estrogens acting through the receptors ERα and ERβ participate in prostate normal growth and cancer. ERβ is highly expressed in the prostate epithelium, playing pro-apoptotic, anti-proliferative, and pro-differentiation roles. Apoptosis is activated by the intrinsic pathway after castration and by the extrinsic pathway after ERβ agonist treatment. This differential activation of apoptotic pathways is important since a major problem in the treatment of prostate cancer is the recurrence of tumors after androgen withdrawal. However, a comprehensive study about the pattern of apoptosis in the aging prostate is lacking, a knowledge gap that we aimed to address herein. METHODS Cellular age-related proliferative and apoptotic profiles of prostate tissue obtained from aging Wistar rats were evaluated. Cell death (caspase-3, -8, -9, TNFα) was assessed by immunohistochemistry, immunofluorescence, and TUNEL. Cell proliferation (MCM7) and cell survival factors (ERK1/2, p-ERK1/2, p-Akt, and NF-κB) were determined by immunohistochemistry. RESULTS As the rats aged, the number of proliferating cells gradually reduced in the normal epithelium of all prostate lobes, while increasing in focal areas of intraepithelial proliferation. Interestingly, in areas of intraepithelial proliferation, we observed a reduction in the number of cells positive for caspase-3, -8, and -9. Regardless the animal's age, few prostate epithelial cells were positive for caspase-3, caspase-9, and TUNEL. In contrast, a progressive increase was seen in the positivity for caspase-8, especially in the atrophic epithelium of ventral prostate, which coincided with a reduction in TNFα immunoreaction. However, morphology of most caspase-8 positive cells suggests that they were not apoptotic. We also found reduced ERβ expression in the same areas. Possibly, low levels of the pro-apoptotic inductors TNFα and ERβ direct caspase-8 activity to an alternative pro-survival role in the atrophic epithelium. This hypothesis is supported by the increased expression of the key survival factors (ERK1/2, p-ERK1/2, p-Akt, and NF-κB) in these areas. CONCLUSIONS Our findings reveal that, as the animals age, there is an increase of proliferation in restricted areas of the prostate epithelium, and a concomitant reduction of the apoptosis rate with an increase in cell survival induced by caspase-8, indicating a focused and spontaneous disruption of tissue homeostasis.
Collapse
Affiliation(s)
- Amanda C R Gonzaga
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel H Campolina-Silva
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Hipácia Werneck-Gomes
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Júnia D Moura-Cordeiro
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Letícia C Santos
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Germán A B Mahecha
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mônica Morais-Santos
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cleida A Oliveira
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
9
|
Kheddache A, Moudilou EN, Zatra Y, Aknoun-Sail N, Amirat Z, Exbrayat JM, Khammar F. Seasonal morphophysiological variations in the prostatic complex of the Tarabul’s gerbil ( Gerbillus tarabuli ). Tissue Cell 2017; 49:345-357. [PMID: 28162243 DOI: 10.1016/j.tice.2017.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/08/2016] [Accepted: 01/16/2017] [Indexed: 12/05/2022]
|
10
|
Holst B, Holmroos E, Friling L, Hanås S, Langborg LM, Franko M, Hansson K. The association between the serum concentration of canine prostate specific esterase (CPSE) and the size of the canine prostate. Theriogenology 2017; 93:33-39. [DOI: 10.1016/j.theriogenology.2017.01.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 11/30/2022]
|
11
|
Morais-Santos M, Nunes AEB, Oliveira AG, Moura-Cordeiro JD, Mahecha GAB, Avellar MCW, Oliveira CA. Changes in Estrogen Receptor ERβ (ESR2) Expression without Changes in the Estradiol Levels in the Prostate of Aging Rats. PLoS One 2015; 10:e0131901. [PMID: 26147849 PMCID: PMC4492744 DOI: 10.1371/journal.pone.0131901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/08/2015] [Indexed: 12/04/2022] Open
Abstract
Although the prostate is androgen-dependent, it is also influenced by estrogens, which act via the estrogen receptors ERα and ERβ. In the prostate, ERβ is highly expressed in the epithelium and appears to participate in the regulation of cell proliferation, apoptosis and differentiation. Evidence shows that ERβ is decreased in malignant prostate, suggesting that it plays an important role in protecting this tissue. Despite the relationship between reductions in ERβ and abnormal growth of the gland, little is known about the age-dependent variation of this receptor. Therefore, we aimed to investigate ERβ expression in the prostatic lobes of aging Wistar rats (3 to 24 months). Histopathological alterations, including hyperplasia, intraluminal concretions, nuclear atypia and prostate intraepithelial neoplasias (PIN), were observed in the prostates of aging rats. Epithelial proliferation led to cribriform architecture in some acini, especially in the ventral prostate (VP). In the VP, areas of epithelial atrophy were also observed. Furthermore, in the lateral prostate, there was frequent prostatitis. Immunohistochemistry revealed that the expression of ERβ is reduced in specific areas related to PIN, atrophic abnormalities and cellular atypia in the prostate epithelium of senile rats. Corroborating the involvement of the receptor with proliferative activity, the punctual reduction in ERβ paralleled the increase in cell proliferation especially in areas of PIN and nuclear atypies. The decrease in ERβ reactivity occurred in a hormonal milieu characterized by a constant concentration of estradiol and decreased plasmatic and tissue DHT. This paper is a pioneering study that reveals focal ERβ reduction in the prostate of aging rats and indicates a potential disorder in the ERβ pathway. These data corroborate previous data from humans and dogs that silencing of this receptor may be associated with premalignant or malignant conditions in the prostate.
Collapse
Affiliation(s)
- Mônica Morais-Santos
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aryane E. B. Nunes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - André G. Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Júnia Dayrell Moura-Cordeiro
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Germán A. B. Mahecha
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Christina W. Avellar
- Department of Pharmacology, Section of Experimental Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Cleida A. Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
12
|
Christoforou P, Christopoulos PF, Koutsilieris M. The role of estrogen receptor β in prostate cancer. Mol Med 2014; 20:427-34. [PMID: 25032955 DOI: 10.2119/molmed.2014.00105] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/14/2014] [Indexed: 01/07/2023] Open
Abstract
Although androgen receptor (AR) signaling is the main molecular tool regulating growth and function of the prostate gland, estrogen receptor β (ERβ) is involved in the differentiation of prostatic epithelial cells and numerous antiproliferative actions on prostate cancer cells. However, ERβ splice variants have been associated with prostate cancer initiation and progression mechanisms. ERβ is promising as an anticancer therapy and in the prevention of prostate cancer. Herein, we review the recent experimental findings of ERβ signaling in the prostate.
Collapse
Affiliation(s)
- Paraskevi Christoforou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis F Christopoulos
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Simmons JK, Dirksen WP, Hildreth BE, Dorr C, Williams C, Thomas R, Breen M, Toribio RE, Rosol TJ. Canine prostate cancer cell line (Probasco) produces osteoblastic metastases in vivo. Prostate 2014; 74:1251-65. [PMID: 25043424 PMCID: PMC4216720 DOI: 10.1002/pros.22838] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/28/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND In 2012, over 240,000 men were diagnosed with prostate cancer and over 28,000 died from the disease. Animal models of prostate cancer are vital to understanding its pathogenesis and developing therapeutics. Canine models in particular are useful due to their similarities to late-stage, castration-resistant human disease with osteoblastic bone metastases. This study established and characterized a novel canine prostate cancer cell line that will contribute to the understanding of prostate cancer pathogenesis. METHODS A novel cell line (Probasco) was derived from a mixed breed dog that had spontaneous prostate cancer. Cell proliferation and motility were analyzed in vitro. Tumor growth in vivo was studied by subcutaneous, intratibial, and intracardiac injection of Probasco cells into nude mice. Tumors were evaluated by bioluminescent imaging, Faxitron radiography, µCT, and histology. RT-PCR and genome-wide DNA copy number profiling were used to characterize the cell line. RESULTS The Probasco cells grew in vitro (over 75 passages) and were tumorigenic in nude mice. Probasco cells expressed high levels of BMP2, CDH1, MYOF, FOLH1, RUNX2, and SMAD5 modest CXCL12, SLUG, and BMP, and no PTHrP mRNA. Following intracardiac injection, Probasco cells metastasized primarily to the appendicular skeleton, and both intratibial and intracardiac injections produced osteoblastic tumors in bone. Comparative genomic hybridization demonstrated numerous DNA copy number aberrations throughout the genome, including large losses and gains in multiple chromosomes. CONCLUSIONS The Probasco prostate cancer cell line will be a valuable model to investigate the mechanisms of prostate cancer pathogenesis and osteoblastic bone metastases.
Collapse
Affiliation(s)
- Jessica K. Simmons
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Wessel P. Dirksen
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Blake E. Hildreth
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Carlee Dorr
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina
| | - Christina Williams
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina
| | - Rachael Thomas
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina
- Cancer Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Ramiro E. Toribio
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio
| | - Thomas J. Rosol
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
- Correspondence to: Dr. Thomas J. Rosol, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
14
|
Romanucci M, Frattone L, Ciccarelli A, Bongiovanni L, Malatesta D, Benazzi C, Brachelente C, Della Salda L. Immunohistochemical expression of heat shock proteins, p63 and androgen receptor in benign prostatic hyperplasia and prostatic carcinoma in the dog. Vet Comp Oncol 2014; 14:337-349. [PMID: 25059752 DOI: 10.1111/vco.12113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 05/20/2014] [Accepted: 06/24/2014] [Indexed: 11/28/2022]
Abstract
This study compared heat shock proteins Hsp60, Hsp72 and Hsp73, along with p63 and androgen receptor (AR) immunoexpression between 16 cases of benign prostatic hyperplasia (BPH) and 11 prostatic carcinomas (PCa) in dogs. The proportion of Hsp60-positive cells was higher in PCa compared with BPH (P = 0.033), whereas the frequency and intensity of Hsp73 immunostaining did not differ significantly between the two groups. Hsp72-immunostained nuclei formed a discontinuous layer along the basement membrane in BPH, whereas cells in this layer in PCa were negative or weakly positive. Hsp72 nuclear score showed significant positive associations with both p63 (P = 0.016) and AR (P = 0.009) scores. Double immunofluorescence revealed Hsp72-p63 and Hsp72-AR co-expressions in basal cell nuclei. Aberrant cytoplasmic p63 immunolabelling was observed in 3 of 11 PCa cases. These results suggest a role of the combined expression of Hsp72, p63 and AR in basal epithelial cells in canine BPH and PCa.
Collapse
Affiliation(s)
- M Romanucci
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - L Frattone
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - A Ciccarelli
- Faculty of Political Sciences, University of Teramo, Teramo, Italy
| | - L Bongiovanni
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - D Malatesta
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - C Benazzi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia (Bologna), Italy
| | - C Brachelente
- Department of Biopathological Sciences and Hygiene of Animal and Food Production, Faculty of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - L Della Salda
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| |
Collapse
|
15
|
|
16
|
Expression of luteinizing hormone and follicle-stimulating hormone receptor in the dog prostate. Theriogenology 2012; 78:777-83. [DOI: 10.1016/j.theriogenology.2012.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 11/16/2022]
|
17
|
Nicholson TM, Ricke WA. Androgens and estrogens in benign prostatic hyperplasia: past, present and future. Differentiation 2011; 82:184-99. [PMID: 21620560 DOI: 10.1016/j.diff.2011.04.006] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/19/2011] [Accepted: 04/26/2011] [Indexed: 01/28/2023]
Abstract
Benign prostatic hyperplasia (BPH) and associated lower urinary tract symptoms (LUTS) are common clinical problems in urology. While the precise molecular etiology remains unclear, sex steroids have been implicated in the development and maintenance of BPH. Sufficient data exists linking androgens and androgen receptor pathways to BPH and use of androgen reducing compounds, such as 5α-reductase inhibitors which block the conversion of testosterone into dihydrotestosterone, are a component of the standard of care for men with LUTS attributed to an enlarged prostate. However, BPH is a multifactorial disease and not all men respond well to currently available treatments, suggesting factors other than androgens are involved. Testosterone, the primary circulating androgen in men, can also be metabolized via CYP19/aromatase into the potent estrogen, estradiol-17β. The prostate is an estrogen target tissue and estrogens directly and indirectly affect growth and differentiation of prostate. The precise role of endogenous and exogenous estrogens in directly affecting prostate growth and differentiation in the context of BPH is an understudied area. Estrogens and selective estrogen receptor modulators (SERMs) have been shown to promote or inhibit prostate proliferation signifying potential roles in BPH. Recent research has demonstrated that estrogen receptor signaling pathways may be important in the development and maintenance of BPH and LUTS; however, new models are needed to genetically dissect estrogen regulated molecular mechanisms involved in BPH. More work is needed to identify estrogens and associated signaling pathways in BPH in order to target BPH with dietary and therapeutic SERMs.
Collapse
Affiliation(s)
- Tristan M Nicholson
- University of Rochester School of Medicine & Dentistry, Rochester, NY, United States
| | | |
Collapse
|
18
|
Colegrove KM, Gulland FMD, Naydan DK, Lowenstine LJ. Normal morphology and hormone receptor expression in the male California sea lion (Zalophus californianus) genital tract. Anat Rec (Hoboken) 2010; 292:1818-26. [PMID: 19768750 DOI: 10.1002/ar.21008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Histomorphology and estrogen alpha (ER alpha), and progesterone receptor (PR) expression were evaluated in free-ranging stranded male California sea lions (Zalophus californianus). Hormone receptor expression was evaluated using an immunohistochemical technique with monoclonal antibodies. Estrogen and PRs were identified in the efferent ductules, prostate gland, corpus cavernosa, corpus spongiosium, penile urethra, and in the epithelium and stroma of both the penis and prepuce. In some tissues, ER alpha expression was more intense in the stroma, emphasizing the importance of the stroma in hormone-mediated growth and differentiation of reproductive organs. To our knowledge, this is the first study to localize ER alpha and PR to the epithelium of the glans penis. The results of this investigation add to the general knowledge of male California sea lion reproduction and suggest that estrogens could have a role in the function of the male reproductive tract.
Collapse
|
19
|
Ginel PJ, Lucena R, Millán Y, González-Medina S, Guil S, García-Monterde J, de los Monteros AE, de las Mulas JM. Expression of oestrogen and progesterone receptors in canine sebaceous gland tumours. Vet Dermatol 2009; 21:297-302. [DOI: 10.1111/j.1365-3164.2009.00861.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Matsuzaki P, Cogliati B, Sanches DS, Chaible LM, Kimura KC, Silva TC, Real-Lima MA, Hernandez-Blazquez FJ, Laufer-Amorim R, Dagli MLZ. Immunohistochemical characterization of canine prostatic intraepithelial neoplasia. J Comp Pathol 2009; 142:84-8. [PMID: 19643431 DOI: 10.1016/j.jcpa.2009.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 06/01/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022]
Abstract
The development of prostate cancer is believed to be a multistep process, progressing sequentially from normal epithelium, to prostatic intraepithelial neoplasia (PIN) and, finally, to invasive neoplasia. Malignant stem cells within the basal cell layer of the prostatic epithelium are believed to play an important role in the failure of androgen-ablation therapy that occurs in the most advanced form of prostate cancer. The aim of the present study was to immunohistochemically characterize the lesions of canine PIN. Prostatic tissue from five dogs with PIN was compared with normal prostate tissue from nine further dogs. There was an increase in the number of basal epithelial cells in lesions consistent with PIN as defined by expression of the nuclear protein p63. These lesions had elevated expression of proliferating cell nuclear antigen (PCNA) and heterogeneous labelling for the nuclear androgen receptor (AR). These findings suggest that the basal cells present in PIN may play a role in canine prostate carcinogenesis and that the proliferation of these cells occurs despite the heterogeneous expression of the AR.
Collapse
Affiliation(s)
- P Matsuzaki
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bibliography. Current world literature. Adrenal cortex. Curr Opin Endocrinol Diabetes Obes 2008; 15:284-299. [PMID: 18438178 DOI: 10.1097/med.0b013e3283040e80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|