1
|
Kadekaru S, Nakamura SI, Toriyama R, Kawasaki M, Ishisaka Y, Une Y. Nitrogen gas-bubble disease in two giant salamanders. DISEASES OF AQUATIC ORGANISMS 2024; 160:95-100. [PMID: 39607053 DOI: 10.3354/dao03829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Gas-bubble disease (GBD)-a non-infectious disease in aquatic organisms caused by supersaturated levels of total dissolved gases (oxygen and nitrogen) in water-is well known in various species, including fish and amphibians, but has not previously been reported in giant salamanders. In the present study, macroscopic and histopathological examinations of 2 mature Andrias spp. (kept with 293 fish in an aquarium) were performed to characterize GBD pathology. Bubbles developed on the body surfaces of the salamanders and fish, with erythema specifically noted in the salamanders. Within 3 d of the bubbles appearing, both salamanders and more than 270 fish had died. On Days 1 and 2, dissolved oxygen levels were 75.5 and 86.9%, respectively, while dissolved nitrogen gas levels were 90.6 and 103.1%, respectively. The 2 salamanders exhibited identical lesions characterized by erythema, congestion, and numerous bubbles in the major veins of the body cavity. Histopathologically, congestion and gas embolism-like dilatations were observed in the small vessels and capillaries. These lesions were found in the parenchymal and gastrointestinal organs, skin, eyeballs, and surrounding stromal tissue. Based on these findings and that GBD occurs at dissolved nitrogen gas and oxygen levels above 120 and 200%, respectively, the salamanders were diagnosed with nitrogen GBD. The exact etiology of this disease remains unconfirmed but likely involves circulatory system dysfunction within the aquarium environment, highlighting the importance of routine inspections and maintenance of equipment.
Collapse
Affiliation(s)
- Sho Kadekaru
- The Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-0054, Japan
| | - Shin-Ichi Nakamura
- The Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-0054, Japan
| | - Rieko Toriyama
- Exhibits and Husbandry Department, Kyoto Aquarium, 35-1 Kankijicho, Shimogyoku, Kyoto 600-8835, Japan
| | - Motoki Kawasaki
- Exhibits and Husbandry Department, Kyoto Aquarium, 35-1 Kankijicho, Shimogyoku, Kyoto 600-8835, Japan
| | - Yasutoshi Ishisaka
- Exhibits and Husbandry Department, Kyoto Aquarium, 35-1 Kankijicho, Shimogyoku, Kyoto 600-8835, Japan
| | - Yumi Une
- The Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-0054, Japan
| |
Collapse
|
2
|
Li Y, Xue M, Dai Y, Xie Y, Wei Y, Wang C, Tian M, Fan Y, Jiang N, Xu C, Liu W, Meng Y, Zhou Y. Chinese giant salamander Bcl-w: An inhibitory role in iridovirus-induced mitochondrial apoptosis and virus replication. Virus Res 2023; 335:199196. [PMID: 37597665 PMCID: PMC10445403 DOI: 10.1016/j.virusres.2023.199196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
B-cell lymphoma-2 (BCL-2) superfamily molecules play crucial roles in mitochondrial apoptosis induced by Chinese giant salamander iridovirus (GSIV). As an anti-apoptotic molecule in the BCL-2 family, the molecular mechanism of Bcl-w during GSIV infection remains unknown. In this study, we characterized for the first time an amphibian Bcl-w from Chinese giant salamander Andrias davidianus (AdBcl-w), and its function and regulatory mechanism during GSIV infection were investigated. AdBcl-w possesses the conserved structural features of Bcl-w and shares 35-54% sequence identities with other Bcl-w. mRNA expression of AdBcl-w was most abundant in liver and muscle. The AdBcl-w mRNA expression was regulated during GSIV infection. Western blotting assays revealed that the level of Bcl-w protein was downregulated markedly as the infection progresses. Confocal microscopy showed that overexpressed AdBcl-w was translocated to the mitochondria after infection with GSIV. Flow cytometry analysis demonstrated that compared with control, the apoptotic progress in cells transfected with AdBcl-w was reduced while that in cells transfected with AdBcl-w siRNA was enhanced. The number of virus major capsid protein gene copies was lower and protein synthesis was reduced in AdBcl-w overexpressing cells. In addition, AdBcl-w could bind directly to the pro-apoptotic molecule AdBak, while this interaction was weakened with GSIV infection. Moreover, p53 level was reduced and the mRNA expression levels of crucial regulatory molecules in the p53 pathway were regulated in AdBcl-w overexpressing cells during GSIV infection. These results suggested that AdBcl-w inhibit GSIV replication by regulating the virus induced mitochondrial apoptosis.
Collapse
Affiliation(s)
- Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China.
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China
| | - Yanlin Dai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China
| | - Yixing Xie
- Zhangjiajie Giant Salamander National Nature Reserve Affairs Center, Zhangjiajie, Hunan 427400, China
| | - Ying Wei
- Zhangjiajie Giant Salamander National Nature Reserve Affairs Center, Zhangjiajie, Hunan 427400, China
| | - Cheng Wang
- Zhangjiajie Giant Salamander National Nature Reserve Affairs Center, Zhangjiajie, Hunan 427400, China
| | - Mingzhu Tian
- Zhangjiajie Giant Salamander National Nature Reserve Affairs Center, Zhangjiajie, Hunan 427400, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences 8 Wudayuan First Road, Wuhan 430223, China.
| |
Collapse
|
3
|
Jiang Q, Meng X, Yu X, Zhang Q, Ke F. Fusing a TurboID tag with the Andrias davidianus ranavirus 2L reduced virus adsorption efficiency. Microb Pathog 2023; 182:106220. [PMID: 37423497 DOI: 10.1016/j.micpath.2023.106220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
Andrias davidianus ranavirus (ADRV) is a member of the genus ranavirus (family Iridoviridae). ADRV 2L is an envelope protein that could be essential in viral infection. In the present study, the function of ADRV 2L was investigated by fusion with the biotin ligase TurboID tag. A recombinant ADRV with a V5-TurboID tag fused in the N-terminal of 2L (ADRVT-2L) and a recombinant ADRV expressing V5-TurboID (ADRVT) were constructed, respectively. Infection of the recombinant viruses and wild-type ADRV (ADRVWT) in the Chinese giant salamander thymus cell line (GSTC) showed that ADRVT-2L had reduced cytopathic effect and lower virus titers than the other two viruses, indicating the fusion of a big tag affected ADRV infection. Analysis of the temporal expression profile showed that the expression of V5-TurboID-2L was delayed than wild-type 2L. However, electron microscopy found that the virion morphogenesis was not affected in ADRVT-2L-infected cells. Furthermore, the virus binding assay revealed that the adsorption efficiency of ADRVT-2L was considerably decreased compared to the other two viruses. Therefore, these data showed that linking the TurboID tag to ADRV 2L affected virus adsorption to the cell membrane, which suggested an important role of 2L in virus entry into cells.
Collapse
Affiliation(s)
- Qiqi Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xianyu Meng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuedong Yu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qiya Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fei Ke
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Hardman RH, Reinert LK, Irwin KJ, Oziminski K, Rollins-Smith L, Miller DL. Disease state associated with chronic toe lesions in hellbenders may alter anti-chytrid skin defenses. Sci Rep 2023; 13:1982. [PMID: 36737574 PMCID: PMC9898527 DOI: 10.1038/s41598-023-28334-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Hellbenders (Cryptobranchus alleganiensis) are large, aquatic salamanders from the eastern United States. Both subspecies, eastern and Ozark hellbenders, have experienced declines resulting in federal listing of Ozark hellbenders. The globally distributed chytrid fungus, Batrachochytrium dendrobatidis (Bd) has been detected in both subspecies, and Batrachochytrium salamandrivorans (Bsal) poses a new threat if introduced into North America. Ozark hellbenders also suffer a high prevalence of toe lesions of unknown etiology, with changes in host immunocompetence hypothesized to contribute. Antimicrobial peptides (AMPs) secreted from dermal granular glands may play a role in hellbender health. We collected skin secretions from free-ranging hellbenders and enriched them for small cationic peptides used for growth inhibition assays against Bd and Bsal. Generalized linear mixed models revealed the presence of active toe lesions as the strongest and only significant predictor of decreased Bd inhibition by skin peptides. We also found skin secretions were more inhibitory of Bsal than Bd. MALDI-TOF mass spectrometry revealed candidate peptides responsible for anti-chytrid activity. Results support the hypothesis that hellbender skin secretions are important for innate immunity against chytrid pathogens, and decreased production or release of skin peptides may be linked to other sub-lethal effects of disease associated with toe lesions.
Collapse
Affiliation(s)
- Rebecca H Hardman
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, 37996, USA. .,Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, FL, 33701, USA.
| | - Laura K Reinert
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Kelly J Irwin
- Arkansas Game and Fish Commission, Benton, AR, 72015, USA
| | - Kendall Oziminski
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, 37996, USA
| | - Louise Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Debra L Miller
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, 37996, USA.,School of Natural of Resources, University of Tennessee, Knoxville, Tennessee, 37996, USA
| |
Collapse
|
5
|
Chen DY, Li BZ, Xu WB, Zhang YM, Li BW, Cheng YX, Xiao Y, Lin CY, Dong WR, Shu MA. The first identification of three AdIRAK2 genes from an evolutionarily important amphibian Andrias davidianus and their involvement in NF-κB activation and inflammatory responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104585. [PMID: 36368593 DOI: 10.1016/j.dci.2022.104585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Interleukin-1 receptor associated kinases (IRAK) is the most important downstream kinases of TLRs/IL-1R signaling pathway for signal transduction and activation of inflammatory response against pathogen infections. However, the molecular identification and function characterization of IRAK2 homologs in lower vertebrate remains obscure. In this study, three IRAK2 genes (AdIRAK2a, AdIRAKb and AdIRAK2c) and their respective transcripts were identified from the Chinese giant salamander Andrias davidianus. This is the first evidence that three different IRAK2 genes exist in an ancient amphibian species, which has never been reported in other vertebrates. The complete open reading frames (ORFs) of AdIRAK2a, AdIRAK2b and AdIRAK2c were 2112 bp, 1917 bp and 816 bp encoding deduced proteins of 703 amino acids (aa), 628 aa and 271 aa, respectively. All three AdIRAK2 proteins contained two predicted conserved functional domains, including a death domain (DD) and a serine/threonine protein kinases domain (KD). Phylogenetic analysis showed that the three AdIRAK2s clustered together with other known IRAK2 of vertebrates. The three AdIRAK2s were ubiquitously expressed in all tested tissues with a similar tissues distribution pattern. After challenge of Aeromonas hydrophila (A. hydrophila), Staphylococcus aureus (S.aureus), giant salamander iridovirus (GSIV, belonging to the genus Ranavirus in the family Iridoviridae) and polyinosinic:polycytidylic acid (poly(I:C)), the expression levels of all AdIRAK2s in blood were significantly altered, however, they exhibited distinct response patterns. Moreover, the results of over-expression and RNAi of AdIRAK2s implied the involvement of AdIRAK2s in triggering NF-κB-mediated signaling pathways and inflammatory responses. This study might provide a better understanding of the presence and immune regulation function of IRAK2 in amphibians and even in vertebrates.
Collapse
Affiliation(s)
- Da-Yong Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bang-Ze Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bing-Wu Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan-Xin Cheng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Xiao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Peñafiel-Ricaurte A, Price SJ, Leung WTM, Alvarado-Rybak M, Espinoza-Zambrano A, Valdivia C, Cunningham AA, Azat C. Is Xenopus laevis introduction linked with Ranavirus incursion, persistence and spread in Chile? PeerJ 2023; 11:e14497. [PMID: 36874973 PMCID: PMC9979829 DOI: 10.7717/peerj.14497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/10/2022] [Indexed: 03/03/2023] Open
Abstract
Ranaviruses have been associated with amphibian, fish and reptile mortality events worldwide and with amphibian population declines in parts of Europe. Xenopus laevis is a widespread invasive amphibian species in Chile. Recently, Frog virus 3 (FV3), the type species of the Ranavirus genus, was detected in two wild populations of this frog near Santiago in Chile, however, the extent of ranavirus infection in this country remains unknown. To obtain more information about the origin of ranavirus in Chile, its distribution, species affected, and the role of invasive amphibians and freshwater fish in the epidemiology of ranavirus, a surveillance study comprising wild and farmed amphibians and wild fish over a large latitudinal gradient (2,500 km) was carried out in 2015-2017. In total, 1,752 amphibians and 496 fish were tested using a ranavirus-specific qPCR assay, and positive samples were analyzed for virus characterization through whole genome sequencing of viral DNA obtained from infected tissue. Ranavirus was detected at low viral loads in nine of 1,011 X. laevis from four populations in central Chile. No other amphibian or fish species tested were positive for ranavirus, suggesting ranavirus is not threatening native Chilean species yet. Phylogenetic analysis of partial ranavirus sequences showed 100% similarity with FV3. Our results show a restricted range of ranavirus infection in central Chile, coinciding with X. laevis presence, and suggest that FV3 may have entered the country through infected X. laevis, which appears to act as a competent reservoir host, and may contribute to the spread the virus locally as it invades new areas, and globally through the pet trade.
Collapse
Affiliation(s)
- Alexandra Peñafiel-Ricaurte
- Sustainability Research Centre & PhD in Conservation Medicine Program, Life Sciences Faculty, Universidad Andres Bello, Santiago, Chile.,Institute of Zoology, Zoological Society of London, London, United Kingdom
| | | | - William T M Leung
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Mario Alvarado-Rybak
- Sustainability Research Centre & PhD in Conservation Medicine Program, Life Sciences Faculty, Universidad Andres Bello, Santiago, Chile.,Institute of Zoology, Zoological Society of London, London, United Kingdom.,Núcleo de Ciencias Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Santiago, Chile
| | - Andrés Espinoza-Zambrano
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Catalina Valdivia
- Sustainability Research Centre & PhD in Conservation Medicine Program, Life Sciences Faculty, Universidad Andres Bello, Santiago, Chile
| | | | - Claudio Azat
- Sustainability Research Centre & PhD in Conservation Medicine Program, Life Sciences Faculty, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
7
|
Liu Z, Xie D, He X, Zhou T, Li W. DNAJA4 Promotes the Replication of the Chinese Giant Salamander Iridovirus. Genes (Basel) 2022; 14:58. [PMID: 36672799 PMCID: PMC9858487 DOI: 10.3390/genes14010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The DNAJ family, a class of chaperone proteins involved in protein folding, assembly, and transport, plays an essential role in viral infections. However, the role of DNAJA4 (DnaJ Heat Shock Protein Family (Hsp40) Member A4) in the ranavirus infection has not been reported. This study demonstrates the function of the epithelial papilloma of carp (EPC) DNAJA4 in Chinese giant salamander (Andrias davidianus) iridovirus (CGSIV) replication. DNAJA4 consists of 1479 base pairs and encodes a 492 amino acid polypeptide. Sequence analysis has shown that EPC DNAJA4 contains a conserved J domain and shares 84% homology with Danio rerio DNAJA4 and 68% homology with Homo sapiens DNAJA4. EPC DNAJA4 was localized in the cytoplasm, and its expression was significantly upregulated after CGSIV infection. Overexpression of EPC DNAJA4 promotes CGSIV replication and CGSIV DNA replication. siRNA knockdown of DNAJA4 expression attenuates CGSIV replication and viral DNA replication. Overexpression and interference experiments have proved that EPC DNAJA4 is a pro-viral factor. Co-IP, GST-pulldown, and immunofluorescence confirmed the interaction between EPC DNAJA4 and CGSIV proliferating cell nuclear antigen (PCNA). Our results demonstrate for the first time that EPC DNAJA4 is involved in viral infection by promoting viral DNA replication and interacting with proteins associated with viral replication.
Collapse
Affiliation(s)
- Zijing Liu
- College of Life Science and Technology, Jinan University, Guangzhou 510642, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China
| | - Daofa Xie
- College of Life Science and Technology, Jinan University, Guangzhou 510642, China
| | - Xianhui He
- College of Life Science and Technology, Jinan University, Guangzhou 510642, China
| | - Tianhong Zhou
- College of Life Science and Technology, Jinan University, Guangzhou 510642, China
| | - Wei Li
- College of Life Science and Technology, Jinan University, Guangzhou 510642, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China
| |
Collapse
|
8
|
Zhang J, Dai Y, Fan Y, Jiang N, Zhou Y, Zeng L, Li Y. Glycosylphosphatidylinositol Mannosyltransferase Ⅰ Protects Chinese Giant Salamander, Andrias davidianus, against Iridovirus. Int J Mol Sci 2022; 23:ijms23169009. [PMID: 36012277 PMCID: PMC9409044 DOI: 10.3390/ijms23169009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Glycosylphosphatidylinositol mannosyltransferase I (GPI-MT-I) is an essential glycosyltransferase of glycosylphosphatidylinositol-anchor proteins (GPI-APs) that transfers the first of the four mannoses in GPI-AP precursors, which have multiple functions, including immune response and signal transduction. In this study, the GPI-MT-I gene that regulates GPI-AP biosynthesis in Andrias davidianus (AdGPI-MT-I) was characterized for the first time. The open reading frame (ORF) of AdGPI-MT-I is 1293 bp and encodes a protein of 430 amino acids that contains a conserved PMT2 superfamily domain. AdGPI-MT-I mRNA was widely expressed in the tissues of the Chinese giant salamander. The mRNA expression level of AdGPI-MT-I in the spleen, kidney, and muscle cell line (GSM cells) was significantly upregulated post Chinese giant salamander iridovirus (GSIV) infection. The mRNA expression of the virus major capsid protein (MCP) in AdGPI-MT-I-overexpressed cells was significantly reduced. Moreover, a lower level of virus MCP synthesis and gene copying in AdGPI-MT-I-overexpressed cells was confirmed by western blot and ddPCR. These results collectively suggest that GSIV replication in GSM cells was significantly reduced by the overexpression of the AdGPI-MT-I protein, which may contribute to a better understanding of the antiviral mechanism against iridovirus infection.
Collapse
Affiliation(s)
- Jingjing Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yanlin Dai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (L.Z.); (Y.L.); Tel.: +86-027-8178-5190 (L.Z.); +86-027-8178-5182 (Y.L.)
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Correspondence: (L.Z.); (Y.L.); Tel.: +86-027-8178-5190 (L.Z.); +86-027-8178-5182 (Y.L.)
| |
Collapse
|
9
|
Zhao R, Gu C, Zou X, Zhao M, Xiao W, He M, He L, Yang Q, Geng Y, Yu Z. Comparative genomic analysis reveals new evidence of genus boundary for family Iridoviridae and explores qualified hallmark genes. Comput Struct Biotechnol J 2022; 20:3493-3502. [PMID: 35860404 PMCID: PMC9284377 DOI: 10.1016/j.csbj.2022.06.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022] Open
Abstract
Members of the family Iridoviridae (iridovirids) are globally distributed and trigger adverse economic and ecological impacts on aquaculture and wildlife. Iridovirids taxonomy has previously been studied based on a limited number of genomes, but this is not suitable for the current and future virological studies as more iridovirids are emerging. In our study, 57 representative iridovirids genomes were selected from a total of 179 whole genomes available on NCBI. Then 18 core genes were screened out for members of the family Iridoviridae. Average amino acid sequence identity (AAI) analysis indicated that a cut-off value of 70% is more suitable for the current iridovirids genome database than ICTV-defined 50% threshold to better clarify viral genus boundaries. In addition, more subgroups were divided at genus level with the AAI threshold of 70%. This observation was further confirmed by genomic synteny analysis, codon usage preference analysis, genome GC content and length analysis, and phylogenic analysis. According to the pairwise comparison analysis of core genes, 9 hallmark genes were screened out to conduct preliminary identification and investigation at the genus level of iridovirids in a more convenient and economical manner.
Collapse
Affiliation(s)
- Ruoxuan Zhao
- Laboratory Animal Center, Southwest Medical University, Luzhou, Sichuan, PR China.,Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Congwei Gu
- Laboratory Animal Center, Southwest Medical University, Luzhou, Sichuan, PR China.,Luzhou Key Laboratory for Model Animal and Human Disease Research, PR China
| | | | - Mingde Zhao
- Laboratory Animal Center, Southwest Medical University, Luzhou, Sichuan, PR China.,Luzhou Key Laboratory for Model Animal and Human Disease Research, PR China
| | - Wudian Xiao
- Laboratory Animal Center, Southwest Medical University, Luzhou, Sichuan, PR China.,Luzhou Key Laboratory for Model Animal and Human Disease Research, PR China
| | - Manli He
- Laboratory Animal Center, Southwest Medical University, Luzhou, Sichuan, PR China.,Luzhou Key Laboratory for Model Animal and Human Disease Research, PR China
| | - Lvqin He
- Laboratory Animal Center, Southwest Medical University, Luzhou, Sichuan, PR China.,Luzhou Key Laboratory for Model Animal and Human Disease Research, PR China
| | - Qian Yang
- Laboratory Animal Center, Southwest Medical University, Luzhou, Sichuan, PR China.,Luzhou Key Laboratory for Model Animal and Human Disease Research, PR China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Zehui Yu
- Laboratory Animal Center, Southwest Medical University, Luzhou, Sichuan, PR China.,Luzhou Key Laboratory for Model Animal and Human Disease Research, PR China.,Scholl of Basic Medical Sciences, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
10
|
Roh N, Park J, Kim J, Kwon H, Park D. Prevalence of Ranavirus Infection in Three Anuran Species across South Korea. Viruses 2022; 14:v14051073. [PMID: 35632814 PMCID: PMC9148164 DOI: 10.3390/v14051073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
To cope with amphibian die-offs caused by ranavirus, it is important to know the underlying ranavirus prevalence in a region. We studied the ranavirus prevalence in tadpoles of two native and one introduced anuran species inhabiting agricultural and surrounding areas at 49 locations across eight provinces of South Korea by applying qPCR. The local ranavirus prevalence and the individual infection rates at infected locations were 32.6% and 16.1%, respectively, for Dryophytes japonicus (Japanese tree frog); 25.6% and 26.1% for Pelophylax nigromaculatus (Black-spotted pond frog); and 30.5% and 50.0% for Lithobates catesbeianus (American bullfrog). The individual infection rate of L. catesbeianus was significantly greater than that of D. japonicus. The individual infection rate of P. nigromaculatus was related to the site-specific precipitation and air temperature. The individual infection rate gradually increased from Gosner development stage 39, and intermittent infection was confirmed in the early and middle developmental stages. Our results show that ranavirus is widespread among wild amphibians living in agricultural areas of South Korea, and mass die-offs by ranavirus could occur at any time.
Collapse
Affiliation(s)
- Namho Roh
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Kangwon, Korea;
| | - Jaejin Park
- Division of Science Education, Kangwon National University, Chuncheon 24341, Kangwon, Korea; (J.P.); (J.K.); (H.K.)
| | - Jongsun Kim
- Division of Science Education, Kangwon National University, Chuncheon 24341, Kangwon, Korea; (J.P.); (J.K.); (H.K.)
| | - Hyerim Kwon
- Division of Science Education, Kangwon National University, Chuncheon 24341, Kangwon, Korea; (J.P.); (J.K.); (H.K.)
| | - Daesik Park
- Division of Science Education, Kangwon National University, Chuncheon 24341, Kangwon, Korea; (J.P.); (J.K.); (H.K.)
- Correspondence: ; Tel.: +82-33-250-6739; Fax: +82-33-259-5600
| |
Collapse
|
11
|
Li Y, Fan Y, Zhou Y, Jiang N, Xue M, Meng Y, Liu W, Zhang J, Lin G, Zeng L. Bcl-xL Reduces Chinese Giant Salamander Iridovirus-Induced Mitochondrial Apoptosis by Interacting with Bak and Inhibiting the p53 Pathway. Viruses 2021; 13:v13112224. [PMID: 34835028 PMCID: PMC8622046 DOI: 10.3390/v13112224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 01/22/2023] Open
Abstract
Chinese giant salamander iridovirus (GSIV) infection could lead to mitochondrial apoptosis in this animal, a process that involves B-cell lymphoma-2 (BCL-2) superfamily molecules. The mRNA expression level of Bcl-xL, a crucial antiapoptotic molecule in the BCL-2 family, was reduced in early infection and increased in late infection. However, the molecular mechanism remains unknown. In this study, the function and regulatory mechanisms of Chinese giant salamander (Andrias davidianus) Bcl-xL (AdBcl-xL) during GSIV infection were investigated. Western blotting assays revealed that the level of Bcl-xL protein was downregulated markedly as the infection progressed. Plasmids expressing AdBcl-xL or AdBcl-xL short interfering RNAs were separately constructed and transfected into Chinese giant salamander muscle cells. Confocal microscopy showed that overexpressed AdBcl-xL was translocated to the mitochondria after infection with GSIV. Additionally, flow cytometry analysis demonstrated that apoptotic progress was reduced in both AdBcl-xL-overexpressing cells compared with those in the control, while apoptotic progress was enhanced in cells silenced for AdBcl-xL. A lower number of copies of virus major capsid protein genes and a reduced protein synthesis were confirmed in AdBcl-xL-overexpressing cells. Moreover, AdBcl-xL could bind directly to the proapoptotic molecule AdBak with or without GSIV infection. In addition, the p53 level was inhibited and the mRNA expression levels of crucial regulatory molecules in the p53 pathway were regulated in AdBcl-xL-overexpressing cells during GSIV infection. These results suggest that AdBcl-xL plays negative roles in GSIV-induced mitochondrial apoptosis and virus replication by binding to AdBak and inhibiting p53 activation.
Collapse
Affiliation(s)
- Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Jingjing Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Ge Lin
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.L.); (Y.F.); (Y.Z.); (N.J.); (M.X.); (Y.M.); (W.L.); (J.Z.); (G.L.)
- Correspondence: ; Tel.: +86-027-81785190
| |
Collapse
|
12
|
Herath J, Ellepola G, Meegaskumbura M. Patterns of infection, origins, and transmission of ranaviruses among the ectothermic vertebrates of Asia. Ecol Evol 2021; 11:15498-15519. [PMID: 34824771 PMCID: PMC8601927 DOI: 10.1002/ece3.8243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/03/2023] Open
Abstract
Ranaviral infections, a malady of ectothermic vertebrates, are becoming frequent, severe, and widespread, causing mortality among both wild and cultured species, raising odds of species extinctions and economic losses. This increase in infection is possibly due to the broad host range of ranaviruses and the transmission of these pathogens through regional and international trade in Asia, where outbreaks have been increasingly reported over the past decade. Here, we focus attention on the origins, means of transmission, and patterns of spread of this infection within the region. Infections have been recorded in both cultured and wild populations in at least nine countries/administrative regions, together with mass die-offs in some regions. Despite the imminent seriousness of the disease in Asia, surveillance efforts are still incipient. Some of the viral strains within Asia may transmit across host-taxon barriers, posing a significant risk to native species. Factors such as rising temperatures due to global climate change seem to exacerbate ranaviral activity, as most known outbreaks have been recorded during summer; however, data are still inadequate to verify this pattern for Asia. Import risk analysis, using protocols such as Pandora+, pre-border pathogen screening, and effective biosecurity measures, can be used to mitigate introduction of ranaviruses to uninfected areas and curb transmission within Asia. Comprehensive surveillance using molecular diagnostic tools for ranavirus species and variants will help in understanding the prevalence and disease burden in the region. This is an important step toward conserving native biodiversity and safeguarding the aquaculture industry.
Collapse
Affiliation(s)
- Jayampathi Herath
- College of ForestryGuangxi Key Lab for Forest Ecology and ConservationGuangxi UniversityNanningChina
| | - Gajaba Ellepola
- College of ForestryGuangxi Key Lab for Forest Ecology and ConservationGuangxi UniversityNanningChina
- Department of ZoologyFaculty of ScienceUniversity of PeradeniyaKandySri Lanka
| | - Madhava Meegaskumbura
- College of ForestryGuangxi Key Lab for Forest Ecology and ConservationGuangxi UniversityNanningChina
| |
Collapse
|
13
|
Jiang N, Fan Y, Zhou Y, Meng Y, Liu W, Li Y, Xue M, Robert J, Zeng L. The Immune System and the Antiviral Responses in Chinese Giant Salamander, Andrias davidianus. Front Immunol 2021; 12:718627. [PMID: 34675918 PMCID: PMC8524050 DOI: 10.3389/fimmu.2021.718627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/16/2021] [Indexed: 12/25/2022] Open
Abstract
The Chinese giant salamander, belonging to an ancient amphibian lineage, is the largest amphibian existing in the world, and is also an important animal for artificial cultivation in China. However, some aspects of the innate and adaptive immune system of the Chinese giant salamander are still unknown. The Chinese giant salamander iridovirus (GSIV), a member of the Ranavirus genus (family Iridoviridae), is a prominent pathogen causing high mortality and severe economic losses in Chinese giant salamander aquaculture. As a serious threat to amphibians worldwide, the etiology of ranaviruses has been mainly studied in model organisms, such as the Ambystoma tigrinum and Xenopus. Nevertheless, the immunity to ranavirus in Chinese giant salamander is distinct from other amphibians and less known. We review the unique immune system and antiviral responses of the Chinese giant salamander, in order to establish effective management of virus disease in Chinese giant salamander artificial cultivation.
Collapse
Affiliation(s)
- Nan Jiang
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Department of Microbiology and Immunology, University of Rochester Medical Center, New York, NY, United States
| | - Yuding Fan
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yong Zhou
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yan Meng
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Wenzhi Liu
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yiqun Li
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Mingyang Xue
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, New York, NY, United States
| | - Lingbing Zeng
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
14
|
Xu YP, Zhou YL, Xiao Y, Gu WB, Li B, Cheng YX, Li BW, Chen DY, Zhao XF, Dong WR, Shu MA. Functional differences in the products of two TRAF3 genes in antiviral responses in the Chinese giant salamander, Andrias davidianus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104015. [PMID: 33460679 DOI: 10.1016/j.dci.2021.104015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/20/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Tumour necrosis factor receptor associated factor 3 (TRAF3) is a crucial transducing protein for linking upstream receptor signals and downstream antiviral signalling pathways. Previous studies mostly clarified the functions of TRAF3 in mammals, birds and fish, but little is known about the characterization and function of TRAF3 in amphibians. In this study, the molecular and functional identification of two TRAF3 genes, AdTRAF3A and AdTRAF3B, were investigated in the Chinese giant salamander Andrias davidianus. The complete open reading frames (ORFs) of AdTRAF3A and AdTRAF3B were 1698 bp and 1743 bp in length, encoding 565 and 580 amino acids, respectively. Both AdTRAF3A and AdTRAF3B deduced proteins contained a RING finger, two TRAF-type zinc fingers, a coiled-coil and a MATH domain. Phylogenetic analysis showed that the AdTRAF3 protein clustered together with other known TRAF3 proteins. Gene expression analysis showed that AdTRAF3s were broadly distributed in all examined tissues with similar distribution patterns. AdTRAF3s in the blood or spleen positively responded to Giant salamander iridovirus (GSIV) and poly (I:C) induction but exhibited distinct response patterns. Silencing AdTRAF3A/B remarkably suppressed the expression of IFN signalling pathway-related genes when leukocytes were treated with DNA virus and the viral RNA analogue. Moreover, overexpression of AdTRAF3A may induce the activation of the IFN-β promoter, and the zinc finger, coiled coil and MATH domains of AdTRAF3A were essential for IFN-β promoter activation. However, the overexpression of AdTRAF3B significantly suppressed IFN-β promoter activity, and its inhibitory effect was enhanced when the RING finger or MATH domain was deleted. Furthermore, AdTRAF3A rather than AdTRAF3B significantly induced NF-κB activation, implying that AdTRAF3A may function as an enhancer in both the IFN and NF-κB signalling pathways. Taken together, our results suggest that the two TRAF3 genes play different crucial regulatory roles in innate antiviral immunity in Chinese giant salamanders.
Collapse
Affiliation(s)
- Ya-Ping Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Lian Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Xiao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan-Xin Cheng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bing-Wu Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Da-Yong Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Feng Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
GEOGRAPHIC AND INDIVIDUAL DETERMINANTS OF IMPORTANT AMPHIBIAN PATHOGENS IN HELLBENDERS (CRYPTOBRANCHUS ALLEGANIENSIS) IN TENNESSEE AND ARKANSAS, USA. J Wildl Dis 2021; 56:803-814. [PMID: 32544028 DOI: 10.7589/2019-08-203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/18/2020] [Indexed: 11/20/2022]
Abstract
Wildlife diseases are a major threat for species conservation and there is a growing need to implement disease surveillance programs to protect species of concern. Globally, amphibian populations have suffered considerable losses from disease, particularly from chytrid fungi (Batrachochytrium dendrobatidis [Bd] and Batrachochytrium salamandrivorans [Bsal]) and ranavirus. Hellbenders (Cryptobranchus alleganiensis) are large riverine salamanders historically found throughout several watersheds of the eastern and midwestern US. Populations of both subspecies (Ozark hellbender, Cryptobranchus alleganiensis bishopi; eastern hellbender, Cryptobranchus alleganiensis alleganiensis) have experienced precipitous declines over at least the past five decades, and emerging pathogens are hypothesized to play a role. We surveyed Ozark hellbender populations in Arkansas (AR) and eastern hellbender populations in Middle Tennessee (MTN) and East Tennessee (ETN) for both chytrid fungi and ranavirus from swabs and tail tissue, respectively, from 2011 to 2017. Overall, we detected Bd on hellbenders from nine out of 15 rivers, with total prevalence of 26.7% (54/ 202) that varied regionally (AR: 33%, 28/86; MTN: 11%, 4/36; ETN: 28%, 22/80). Ranavirus prevalence (9.0%, 18/200) was comparatively lower than Bd, with less regional variation in prevalence (AR: 6%, 5/ 85; MTN: 11%, 4/36; ETN: 10%, 8/79). We did not detect Bsal in any hellbender populations. We detected a significant negative correlation between body condition score and probability of ranavirus infection (β=-0.13, SE=0.06, 95% confidence interval: -0.24, -0.02). Evaluation of infection load of positive individuals revealed different trends than prevalence alone for both ranavirus and Bd, with MTN having a significantly greater average ranaviral load than both other regions. We documented a variety of lesions that likely have multiple etiologies on hellbenders located within all geographic regions. Our data represent a multiyear pathogen dataset across several regions of C. alleganiensis, and we emphasize the need for continued pathogen surveillance.
Collapse
|
16
|
Deng Z, Wang J, Zhang W, Geng Y, Zhao M, Gu C, Fu L, He M, Xiao Q, Xiao W, He L, Yang Q, Han J, Yan X, Yu Z. The Insights of Genomic Synteny and Codon Usage Preference on Genera Demarcation of Iridoviridae Family. Front Microbiol 2021; 12:657887. [PMID: 33868215 PMCID: PMC8044322 DOI: 10.3389/fmicb.2021.657887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/09/2021] [Indexed: 11/13/2022] Open
Abstract
The members of the family Iridoviridae are large, double-stranded DNA viruses that infect various hosts, including both vertebrates and invertebrates. Although great progress has been made in genomic and phylogenetic analyses, the adequacy of the existing criteria for classification within the Iridoviridae family remains unknown. In this study, we redetermined 23 Iridoviridae core genes by re-annotation, core-pan analysis and local BLASTN search. The phylogenetic tree based on the 23 re-annotated core genes (Maximum Likelihood, ML-Tree) and amino acid sequences (composition vector, CV-Tree) were found to be consistent with previous reports. Furthermore, the information provided by synteny analysis and codon usage preference (relative synonymous codon usage, correspondence analysis, ENC-plot and Neutrality plot) also supports the phylogenetic relationship. Collectively, our results will be conducive to understanding the genera demarcation within the Iridoviridae family based on genomic synteny and component (codon usage preference) and contribute to the existing taxonomy methods for the Iridoviridae family.
Collapse
Affiliation(s)
- Zhaobin Deng
- Laboratory Animal Center, Southwest Medical University, Luzhou, China.,Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,School of Comprehensive Human Sciences, Doctoral Program in Biomedical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Wenjie Zhang
- Laboratory Animal Center, Southwest Medical University, Luzhou, China.,School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingde Zhao
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Congwei Gu
- Laboratory Animal Center, Southwest Medical University, Luzhou, China.,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lu Fu
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Manli He
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Qihai Xiao
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Wudian Xiao
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Lvqin He
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Qian Yang
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Jianhong Han
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Xuefeng Yan
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Zehui Yu
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
Li Y, Liu Y, Zhou Y, Liu W, Fan Y, Jiang N, Xue M, Meng Y, Zeng L. Bid is involved in apoptosis induced by Chinese giant salamander iridovirus and contributes to the viral replication in an amphibian cell line. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103935. [PMID: 33242566 DOI: 10.1016/j.dci.2020.103935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Bid is a pro-apoptotic BH3-only member of the Bcl-2 superfamily that functions to link the extrinsic apoptotic pathway and the mitochondrial amplification loop of the intrinsic pathway. In this study, the expression and functions of Chinese giant salamander (Andrias davidianus) Bid (AdBid) were investigated. The AdBid cDNA sequence contains an open reading frame (ORF) of 576 nucleotides, encoding a putative protein of 191 aa. AdBid possesses the conserved BH3 interacting domain and shared 34-52% sequence identities with other amphibian Bid. mRNA expression of AdBid was most abundant in muscle. The expression level of AdBid in Chinese giant salamander muscle, kidney and spleen significantly increased after Chinese giant salamander iridovirus (GSIV) infection. Additionally, a plasmid expressing AdBid was constructed and transfected into the Chinese giant salamander muscle cell line (GSM cells). The morphology and cytopathic effect (CPE) and apoptotic process in AdBid over-expressed GSM cells was significantly enhanced during GSIV infection compared with that in control cells. Moreover, a higher level of the virus major capsid protein (MCP) gene copies and protein synthesis was confirmed in the AdBid over-expressed cells. These results indicated that AdBid played a positive role in GSIV induced apoptosis and the viral replication. This study may contribute to the better understanding on the infection mechanism of iridovirus-induced apoptosis.
Collapse
Affiliation(s)
- Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yanan Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
18
|
Range-wide decline of Chinese giant salamanders Andrias spp. from suitable habitat. ORYX 2021. [DOI: 10.1017/s0030605320000411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AbstractOver recent decades, Chinese giant salamanders Andrias spp. have declined dramatically across much of their range. Overexploitation and habitat degradation have been widely cited as the cause of these declines. To investigate the relative contribution of each of these factors in driving the declines, we carried out standardized ecological and questionnaire surveys at 98 sites across the range of giant salamanders in China. We did not find any statistically significant differences between water parameters (temperature, dissolved oxygen, ammonia, nitrite, nitrate, salinity, alkalinity, hardness and flow rate) recorded at sites where giant salamanders were detected by survey teams and/or had been recently seen by local respondents, and sites where they were not detected and/or from which they had recently been extirpated. Additionally, we found direct and indirect evidence that the extraction of giant salamanders from the wild is ongoing, including within protected areas. Our results support the hypothesis that the decline of giant salamanders across China has been primarily driven by overexploitation. Data on water parameters may be informative for the establishment of conservation breeding programmes, an initiative recommended for the conservation of these species.
Collapse
|
19
|
Salla RF, Jones-Costa M, Abdalla FC, Vidal FAP, Boeing GANS, Oliveira CR, Silva-Zacarin ECM, Franco-Belussi L, Rizzi-Possignolo GM, Lambertini C, Toledo LF. Differential liver histopathological responses to amphibian chytrid infection. DISEASES OF AQUATIC ORGANISMS 2020; 142:177-187. [PMID: 33331285 DOI: 10.3354/dao03541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Amphibians have been facing a pandemic caused by the deadly fungus Batrachochytrium dendrobatidis (Bd). Although studies have elucidated cutaneous and homeostatic disturbances, it is still unknown if the hepatic function can be affected or if hepatic effects differ among host species. Thus, we evaluated the effects of an experimental Bd infection on the liver (histopathology and the hepatosomatic index) of 2 anuran species (Xenopus laevis and Physalaemus albonotatus) with different susceptibilities to Bd infection and compared them to uninfected controls. Bd infection increased the melanomacrophage cell area and induced leukocyte infiltration in both species. The effects were more pronounced in the sensitive species, P. albonotatus, which showed severe reduction in glycogen stores and liver atrophy, due to energetic imbalance. Hepatocytes of P. albonotatus also showed ballooning degeneration (vacuolization), which could lead to cell death and liver failure. Our results provide evidence that although the sensitive species showed more severe effects, the tolerant species also had hepatic responses to the infection. These findings indicate that hepatic function can play an important role in detoxification and in immune responses to chytridiomycosis, and that it may be used as a new biomarker of health status in chytrid infections.
Collapse
Affiliation(s)
- Raquel F Salla
- Laboratory of Natural History of Brazilian Amphibians, Biology Institute, State University of Campinas, Campinas, São Paulo 13083-862, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
This article updates the understanding of two extirpation-driving infectious diseases, Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans, and Ranavirus. Experimental studies and dynamic, multifactorial population modeling have outlined the epidemiology and future population impacts of B dendrobatidis, B salamandrivorans, and Ranavirus. New genomic findings on divergent fungal and viral pathogens can help optimize control and disease management strategies. Although there have been major advances in knowledge of amphibian pathogens, controlled studies are needed to guide population recovery to elucidate and evaluate transmission routes for several pathogens, examine environmental control, and validate new diagnostic tools to confirm the presence of disease.
Collapse
|
21
|
Huo S, Jiao H, Chen B, Kuang M, Li Q, Lu Y, Liu X. FTR67, a member of the fish-specific finTRIM family, triggers IFN pathway and against spring viremia of carp virus. FISH & SHELLFISH IMMUNOLOGY 2020; 103:1-8. [PMID: 32334126 DOI: 10.1016/j.fsi.2020.04.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Tripartite motif (TRIM) proteins have attracted particular research interest because of their multiple functions in the antiviral innate immune response. TRIM proteins perform different functions during virus infection, some play a role in inhibiting while others play a role in promoting. In this study, we described a species-specific TRIM gene named ftr67. Analysis of tissue distribution showed that ftr67 was mainly expressed in the gill and liver in five examined tissues of zebrafish. The phylogenic analysis showed that ftr67 was closest to the grass carp TRIM67. Overexpression of ftr67 resulted in a significantly decreased SVCV entry and impaired SVCV replication in FHM cells. Furthermore, overexpression of ftr67 could significantly induce the upregulation of molecular sensor RIG-I, IRF3/7, IFN and ISGs. In addition, RING domain of ftr67 was a required part essential for the antiviral effect. In summary, our results demonstrated that the important role of ftr67 in regulating SVCV infection, which offers a potential target for development of anti-SVCV therapies.
Collapse
Affiliation(s)
- Shitian Huo
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Houqi Jiao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Bo Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Ming Kuang
- Institute of Systems Biomedicine, Department of Immunology, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, 100191, China
| | - Qing Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Yuanan Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA
| | - Xueqin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China.
| |
Collapse
|
22
|
Chen B, Li C, Yao J, Shi L, Liu W, Wang F, Huo S, Zhang Y, Lu Y, Ashraf U, Ye J, Liu X. Zebrafish NIK Mediates IFN Induction by Regulating Activation of IRF3 and NF-κB. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1881-1891. [PMID: 32066597 DOI: 10.4049/jimmunol.1900561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/09/2020] [Indexed: 01/19/2023]
Abstract
Type I IFN mediates the innate immune system to provide defense against viral infections. NF-κB-inducing kinase (NIK) potentiates the basal activation of endogenous STING, which facilitates the recruitment of TBK1 with the ectopically expressed IRF3 to induce IFN production. Moreover, NIK phosphorylates IKKα and confers its ability to phosphorylate p100 (also known as NF-κB2) in mammals. Our study demonstrated that NIK plays a critical role in IFN production in teleost fish. It was found that NIK interacts with IKKα in the cytoplasm and that IKKα phosphorylates the NIK at the residue Thr432, which is different from the mammals. Overexpression of NIK caused the activation of IRF3 and NF-κB, which in turn led to the production of IFN and IFN-stimulated genes (ISGs). Furthermore, the ectopic expression of NIK was observed to be associated with a reduced replication of the fish virus, whereas silencing of endogenous NIK had an opposite effect in vitro. Furthermore, NIK knockdown significantly reduced the expression of IFN and key ISGs in zebrafish larvae after spring viremia of carp virus infection. Additionally, the replication of spring viremia of carp virus was enhanced in NIK knockdown zebrafish larvae, leading to a lower survival rate. In summary, our findings revealed a previously undescribed function of NIK in activating IFN and ISGs as a host antiviral response. These findings may facilitate the establishment of antiviral therapy to combat fish viruses.
Collapse
Affiliation(s)
- Bo Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Chen Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Jian Yao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Lin Shi
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Wanmeng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Fang Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Shitian Huo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Yongan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Yuanan Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, Hawaii 96822; and
| | - Usama Ashraf
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xueqin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China;
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| |
Collapse
|
23
|
Hardman RH, Irwin KJ, Sutton WB, Miller DL. Evaluation of Severity and Factors Contributing to Foot Lesions in Endangered Ozark Hellbenders, Cryptobranchus alleganiensis bishopi. Front Vet Sci 2020; 7:34. [PMID: 32118058 PMCID: PMC7010714 DOI: 10.3389/fvets.2020.00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/14/2020] [Indexed: 11/13/2022] Open
Abstract
Arkansas populations of Ozark Hellbenders, Cryptobranchus alleganiensis bishopi have declined precipitously over the past few decades and are now limited to a single river. Biologists have also observed an increase of distal limb lesions with unidentified etiology and unknown role in morbidity and mortality of the species in this location. We documented lesions and collected associated individual size class data and pathogen samples in Ozark Hellbenders of Arkansas (n = 73) from 2011 to 2014 with the following two objectives: (1) document spatiotemporal patterns and severity of lesions present in this last remaining Arkansas Ozark Hellbender population, and (2) determine if host factors and infection status are associated with lesion severity. A scoring system was created from 0 to 7 based on lesion observations. Linear mixed model regressions followed by AICc model evaluation were used to determine associations among infection status for amphibian pathogens Batrachochytrium dendrobatidis (Bd) and Ranavirus as well as individual biometrics on lesion score. We discovered 93.2% of Hellbenders had lesions characterized by digit swelling that often progressed toward toe-tip ulceration. In severe cases we observed digital necrosis progressing to digit loss. Any recaptured individuals had the same or worse lesion score from previous captures. The top predictive model for lesion severity included individual mass and Bd infection status with a significant, positive association of Bd with increased lesion severity (β = 0.87 ± 0.39 S.E., C.I.: 0.11, 1.63). Our findings highlight a widespread and progressive disease that is an important factor to consider for the future of Ozark Hellbenders. This syndrome is presumptively multifactorial, and future studies will benefit from investigating several factors of host, infectious agents, and environment and their roles in disease manifestation for the purpose of developing effective, multi-faceted conservation strategies. A summary of potential etiologies and mechanisms is provided that may explain observed lesion distribution and that will be applicable to future disease and epidemiological investigations.
Collapse
Affiliation(s)
- Rebecca H Hardman
- Center for Wildlife Health, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Kelly J Irwin
- Arkansas Game and Fish Commission, Benton, AR, United States
| | - William B Sutton
- Wildlife Ecology Laboratory, Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, United States
| | - Debra L Miller
- Center for Wildlife Health, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
24
|
Deng L, Geng Y, Zhao R, Gray MJ, Wang K, Ouyang P, Chen D, Huang X, Chen Z, Huang C, Zhong Z, Guo H, Fang J. CMTV-like ranavirus infection associated with high mortality in captive catfish-like loach, Triplophysa siluorides, in China. Transbound Emerg Dis 2020; 67:1330-1335. [PMID: 31904194 DOI: 10.1111/tbed.13473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/11/2019] [Accepted: 01/02/2020] [Indexed: 11/27/2022]
Abstract
Ranaviruses are important emerging pathogens of ectothermic vertebrates that threaten aquaculture and wildlife worldwide. A mortality event occurred in a cultured population of catfish-like loach (Triplophysa siluorides) in Sichuan Province, China. Gross clinical signs of the affected fish included skin lesions and haemorrhagic ulcers, which are often associated with ranaviruses. Inoculation of liver, kidney and spleen tissue homogenates in epithelioma papulosum cyprini (EPC) cells at 25°C resulted in cytopathic effect within 24 hr. Transmission electron microscopy of infected EPC cells revealed hexagonal viral arrays in the cytoplasm and icosahedral geometry of the virions. Following exposure of T. siluroides to the isolated virus, similar clinical signs were observed and the fish experienced 40% and 90% mortality after 21 days at 103.58 and 107.8 TCID50 /0.1 ml doses, respectively, providing evidence the isolated virus was the main causative agent of the mortality event. Diagnostic PCR of the major capsid protein gene of ranavirus showed that all samples of diseased fish and isolated virus were positive. Phylogenetic analysis revealed that the isolated virus, designated as FYLl40220, was associated with the Common Midwife Toad Virus (CMTV)-like ranavirus clade. To our knowledge, this case represents the first report of CMTV-associated mortality in a fish species. Collectively, these results suggest that the host range of CMTV-like ranaviruses is greater than previously thought, and this clade of ranaviruses could have significant economic and biodiversity impacts.
Collapse
Affiliation(s)
- Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Ruoxuan Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Matthew J Gray
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Kaiyu Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Defang Chen
- Department of Aquaculture, Sichuan Agricultural University, Wenjiang, China
| | - Xiaoli Huang
- Department of Aquaculture, Sichuan Agricultural University, Wenjiang, China
| | - Zhengli Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
25
|
Ballard D, Davis A, Fuller R, Garner A, Mileham A, Serna J, Brue D, Harding C, Dodgen C, Culpepper W, Piatt B, Rosario S, Duffus A. An examination of the Iridovirus core genes for reconstructing Ranavirus phylogenies. Facets (Ott) 2020. [DOI: 10.1139/facets-2020-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ranaviruses are globally emerging infections of poikilothermic vertebrates and belong to the viral family Iridoviridae. The six species of ranaviruses are responsible for unknown numbers of infections and disease and mortality events around the world in amphibians, fish, and reptiles. Genomic investigations have shown that there are 24 core genes shared by all iridoviruses. In this study, we examine the utility of each of these genes in reconstructing phylogenetic relationships across six species of Ranavirus. We also performed dot-plot analysis for the 17 isolates in the study. For large-scale differentiation, using the major capsid protein gene creates a tree similar to the whole genome tree. Other comparable genes include open reading frame (ORF) 19R (a serine–theonine protein kinase) and ORF 88R (Erv I/Alr Family protein). The poorest candidate for phylogenetic reconstruction, due to high homology, was ORF 1R (a putative replication factor and (or) DNA binding-packing protein). There are a plethora of genes that may be useful to examine phylogenies at smaller scales (e.g., to examine local adaptation); however, they do not necessarily belong to the set of highly conserved core genes.
Collapse
Affiliation(s)
- D.R. Ballard
- Department of Mathematics and Computer Sciences, School of Arts and Sciences, Gordon State College, Barnesville, GA 30204, USA
| | - A.J. Davis
- Department of Natural Sciences, School of Nursing, Health, and Natural Sciences, Gordon State College, Barnesville, GA 30204, USA
| | - R.B. Fuller
- Department of Natural Sciences, School of Nursing, Health, and Natural Sciences, Gordon State College, Barnesville, GA 30204, USA
| | - A.R. Garner
- Department of Natural Sciences, School of Nursing, Health, and Natural Sciences, Gordon State College, Barnesville, GA 30204, USA
| | - A.D. Mileham
- Department of Natural Sciences, School of Nursing, Health, and Natural Sciences, Gordon State College, Barnesville, GA 30204, USA
| | - J.D. Serna
- Department of Natural Sciences, School of Nursing, Health, and Natural Sciences, Gordon State College, Barnesville, GA 30204, USA
| | - D.E. Brue
- Department of Natural Sciences, School of Nursing, Health, and Natural Sciences, Gordon State College, Barnesville, GA 30204, USA
| | - C.M. Harding
- Department of Natural Sciences, School of Nursing, Health, and Natural Sciences, Gordon State College, Barnesville, GA 30204, USA
| | - C.D. Dodgen
- Department of Natural Sciences, School of Nursing, Health, and Natural Sciences, Gordon State College, Barnesville, GA 30204, USA
| | - W. Culpepper
- Department of Natural Sciences, School of Nursing, Health, and Natural Sciences, Gordon State College, Barnesville, GA 30204, USA
| | - B. Piatt
- Department of Natural Sciences, School of Nursing, Health, and Natural Sciences, Gordon State College, Barnesville, GA 30204, USA
| | - S.E. Rosario
- Science Division, Valencia College, Orlando, FL 32802, USA
| | - A.L.J. Duffus
- Department of Natural Sciences, School of Nursing, Health, and Natural Sciences, Gordon State College, Barnesville, GA 30204, USA
| |
Collapse
|
26
|
Ghimire TR, Regmi GR, Huettmann F. When Micro Drives the Macro: A Fresh Look at Disease and its Massive Contributions in the Hindu Kush-Himalaya. HINDU KUSH-HIMALAYA WATERSHEDS DOWNHILL: LANDSCAPE ECOLOGY AND CONSERVATION PERSPECTIVES 2020. [PMCID: PMC7197387 DOI: 10.1007/978-3-030-36275-1_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The outbreaks of emerging and reemerging diseases have a high impact on the human and animal health because they are the underlying causes of disability, death, and long-term illness. For many regions those details are not, or just poorly known. Here we present on the morbidity and mortality in faunal diversities including domestic and wild species caused by various viral, bacterial, parasitic, and fungal diseases prevalent in Nepal and relevant for the wider Hindu Kush Himalaya. In addition, we provide details how antibiotic resistivity, vectors, and zoonosis have resulted on a landscape-scale in the huge public and veterinary health problem has been dealt with in the context of Nepal and the wider region.
Collapse
|
27
|
Li Y, Jiang N, Fan Y, Zhou Y, Liu W, Xue M, Meng Y, Zeng L. Chinese Giant Salamander ( Andrias davidianus) Iridovirus Infection Leads to Apoptotic Cell Death through Mitochondrial Damage, Caspases Activation, and Expression of Apoptotic-Related Genes. Int J Mol Sci 2019; 20:ijms20246149. [PMID: 31817556 PMCID: PMC6940751 DOI: 10.3390/ijms20246149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022] Open
Abstract
Chinese giant salamander iridovirus (GSIV) is the causative pathogen of Chinese giant salamander (Andrias davidianus) iridovirosis, leading to severe infectious disease and huge economic losses. However, the infection mechanism by GSIV is far from clear. In this study, a Chinese giant salamander muscle (GSM) cell line is used to investigate the mechanism of cell death during GSIV infection. Microscopy observation and DNA ladder analysis revealed that DNA fragmentation happens during GSIV infection. Flow cytometry analysis showed that apoptotic cells in GSIV-infected cells were significantly higher than that in control cells. Caspase 8, 9, and 3 were activated in GSIV-infected cells compared with the uninfected cells. Consistently, mitochondria membrane potential (MMP) was significantly reduced, and cytochrome c was released into cytosol during GSIV infection. p53 expression increased at an early stage of GSIV infection and then slightly decreased late in infection. Furthermore, mRNA expression levels of pro-apoptotic genes participating in the extrinsic and intrinsic pathway were significantly up-regulated during GSIV infection, while those of anti-apoptotic genes were restrained in early infection and then rose in late infection. These results collectively indicate that GSIV induces GSM apoptotic cell death involving mitochondrial damage, caspases activation, p53 expression, and pro-apoptotic molecules up-regulation.
Collapse
|
28
|
Yu NT, Zhang QY. A transmembrane domain of Andrias davidianus ranavirus 13R is crucial for co-localization to endoplasmic reticulum and viromatrix. 3 Biotech 2019; 9:433. [PMID: 31696038 DOI: 10.1007/s13205-019-1961-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
13R, a core gene of Andrias davidianus ranavirus (ADRV), encoded a protein containing a transmembrane domain (TMD) and a restriction endonuclease-like domain. However, the characterization and function of 13R and the protein it encodes remain unclear. In this study, Chinese giant salamander thymus cell (GSTC) was used to investigate the function of 13R. The results showed that the 13R transcripts were detected first at 8 h post-infection (hpi) by RT-PCR and the protein was detected first at 24 hpi by western blot, but the transcription was inhibited by cycloheximide and cytosine arabinofuranoside, indicating that 13R is a viral late gene. Subcellular localization showed that the 13R was co-localized with endoplasmic reticulum (ER) in the cytoplasm, while 13R deleting TMD (13RΔTM) was distributed in cytoplasm and nucleus. During ADRV infection, 13R was observed first in the cytoplasm and nucleus, and later aggregated into the viromatrix, whereas 13RΔTM remain dispersed in cytoplasm and nucleus. Western blot analysis suggested that 13R was a viral non-structural protein and its overexpression did not affect the viral titer in GSTC. All these indicated that the TMD of 13R is crucial for the co-localization into the ER and the viromatrix.
Collapse
Affiliation(s)
- Nai-Tong Yu
- 1State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
- 2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qi-Ya Zhang
- 1State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
- 2University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
29
|
A highly invasive chimeric ranavirus can decimate tadpole populations rapidly through multiple transmission pathways. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.108777] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Rapid detection of giant salamander iridovirus by cross-priming amplification. J Virol Methods 2019; 274:113678. [PMID: 31442460 DOI: 10.1016/j.jviromet.2019.113678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/27/2019] [Accepted: 06/10/2019] [Indexed: 11/21/2022]
Abstract
Giant salamander iridovirus (GSIV) belongs to the epizootic genus Ranavirus, and is the cause of epidemic diseases associated with high mortality and great losses to artificial breeding and farming. Here, we established a simple, accurate, and reliable cross-priming amplification (CPA) method to detect GSIV. The CPA assay targets the major caspid protein gene of the GSIV genome to design crossing primer pairs, and the reaction conditions were optimized, including optimal concentrations of the primers, betaine, dNTPs, Mg2+, and Bst DNA polymerase, and reaction conditions. The sensitivity was shown to be 10 times higher than that of conventional polymerase chain reaction (PCR), and the specificity was 100%. The results were identified on nucleic acid strips within 3-5 min. Application of the CPA and PCR to 54 samples of giant salamander showed a positive rate of 72.22% and 74.07%, respectively, demonstrating high coincidence (94.44%, kappa = 8.7, P < 0.0001). The sensitivity of the CPA assay was 97.50% and the specificity was 92.86%. Thus, the CPA assay is as effective as conventional PCR, but with added practical advantages of simplicity and an almost instrument-free platform, which will be useful for both laboratories and giant salamander farms.
Collapse
|
31
|
Grant SA, Bienentreu JF, Vilaça ST, Brunetti CR, Lesbarrères D, Murray DL, Kyle CJ. Low intraspecific variation of Frog virus 3 with evidence for novel FV3-like isolates in central and northwestern Canada. DISEASES OF AQUATIC ORGANISMS 2019; 134:1-13. [PMID: 32132268 DOI: 10.3354/dao03354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Frog virus 3 (FV3) and FV3-like ranaviruses can infect a variety of cold-blooded aquatic species and present a primary threat to amphibians across the globe. Previous studies of FV3-like viruses have largely investigated higher-level phylogenetic distinctions of these pathogens via portions of the conserved major capsid protein (MCP), and the putative virulence gene vIF-2α. Few studies, however, have investigated the spatial distribution of FV3 variants at the population level3-data that can be used to further understand the spatial epidemiology of this disease. In this study, we sequenced the MCP and vIF-2α of 127 FV3-positive amphibians sampled from Canadian water bodies in Ontario, northeastern Alberta, and southern Northwest Territories to explore whether intraspecific genetic variation exists within FV3. There was a lack of variation at the 2 markers across these regions, suggesting that there is a lack of FV3 sequence diversity in Canada, which may hint at a single source of infection that has spread. However, an undocumented variant termed Wood Buffalo ranavirus (WBRV) was detected in samples from 3 sites in Alberta and Northwest Territories that clustered within the FV3-like lineage with 99.3% sequence homology for MCP. For vIF-2α, all sequences were the expected truncated variant except for 6 samples in Ontario. These latter sequences were suggestive of recombination with common midwife toad virus (CMTV). The lack of variation suggests that higher-resolution genome analyses will be required to further explore the spatial spread and intraspecific variation of the disease.
Collapse
Affiliation(s)
- Samantha A Grant
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario K9J 7B8, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Common midwife toad ranaviruses replicate first in the oral cavity of smooth newts (Lissotriton vulgaris) and show distinct strain-associated pathogenicity. Sci Rep 2019; 9:4453. [PMID: 30872735 PMCID: PMC6418247 DOI: 10.1038/s41598-019-41214-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/28/2019] [Indexed: 11/08/2022] Open
Abstract
Ranavirus is the second most common infectious cause of amphibian mortality. These viruses affect caudates, an order in which information regarding Ranavirus pathogenesis is scarce. In the Netherlands, two strains (CMTV-NL I and III) were suspected to possess distinct pathogenicity based on field data. To investigate susceptibility and disease progression in urodeles and determine differences in pathogenicity between strains, 45 adult smooth newts (Lissotriton vulgaris) were challenged via bath exposure with these ranaviruses and their detection in organs and feces followed over time by PCR, immunohistochemistry and in situ hybridization. Ranavirus was first detected at 3 days post infection (p.i.) in the oral cavity and upper respiratory mucosa. At 6 days p.i, virus was found in connective tissues and vasculature of the gastrointestinal tract. Finally, from 9 days p.i onwards there was widespread Ranavirus disease in various organs including skin, kidneys and gonads. Higher pathogenicity of the CMTV-NL I strain was confirmed by higher correlation coefficient of experimental group and mortality of challenged animals. Ranavirus-exposed smooth newts shed virus in feces intermittently and infection was seen in the absence of lesions or clinical signs, indicating that this species can harbor subclinical infections and potentially serve as disease reservoirs.
Collapse
|
33
|
Pathogen Risk Analysis for Wild Amphibian Populations Following the First Report of a Ranavirus Outbreak in Farmed American Bullfrogs ( Lithobates catesbeianus) from Northern Mexico. Viruses 2019; 11:v11010026. [PMID: 30609806 PMCID: PMC6356443 DOI: 10.3390/v11010026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/29/2018] [Accepted: 12/24/2018] [Indexed: 01/20/2023] Open
Abstract
Ranaviruses are the second deadliest pathogens for amphibian populations throughout the world. Despite their wide distribution in America, these viruses have never been reported in Mexico, the country with the fifth highest amphibian diversity in the world. This paper is the first to address an outbreak of ranavirus in captive American bullfrogs (Lithobates catesbeianus) from Sinaloa, Mexico. The farm experienced high mortality in an undetermined number of juveniles and sub-adult bullfrogs. Affected animals displayed clinical signs and gross lesions such as lethargy, edema, skin ulcers, and hemorrhages consistent with ranavirus infection. The main microscopic lesions included mild renal tubular necrosis and moderate congestion in several organs. Immunohistochemical analyses revealed scant infected hepatocytes and renal tubular epithelial cells. Phylogenetic analysis of five partial ranavirus genes showed that the causative agent clustered within the Frog virus 3 clade. Risk assessment with the Pandora+ protocol demonstrated a high risk for the pathogen to affect amphibians from neighboring regions (overall Pandora risk score: 0.619). Given the risk of American bullfrogs escaping and spreading the disease to wild amphibians, efforts should focus on implementing effective containment strategies and surveillance programs for ranavirus at facilities undertaking intensive farming of amphibians.
Collapse
|
34
|
Chen B, Huo S, Liu W, Wang F, Lu Y, Xu Z, Liu X. Fish-specific finTRIM FTR36 triggers IFN pathway and mediates inhibition of viral replication. FISH & SHELLFISH IMMUNOLOGY 2019; 84:876-884. [PMID: 30366094 DOI: 10.1016/j.fsi.2018.10.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
The tripartite motif (TRIM) family involves many cellular processes, including fundamental functions in antiviral immunity. Antiviral activities of TRIMs are reported in a variety of patterns, and one of the most significant channels is related to the activation of the type-I interferon (IFN) pathway. In this study, we described a fintrim (ftr) gene named ftr36, which is mainly expressed in the gills, skin, and intestines. This study shows that ftr36 encodes a protein affording a potent antiviral effect. In vitro, overexpression of FTR36 mediated an upregulated pattern of recognition receptor retinoic acid-inducible gene I (RIG-I), interferon regulatory factor 3/7(IRF3/7), IFN, and IFN-stimulated genes (ISGs) expression. Thereby, FTR36 expression could afford host defense against the spring viremia of carp virus (SVCV) and the giant salamander iridovirus (GSIV). With the deletion of the RING domain or B30.2 domain separately, the antiviral ability of FTR36 was abolished partially and almost lost its ability to activate the IFN-pathway. These findings indicate that both RING and B30.2 domains are indispensable for the antiviral activity of FTR36. Altogether, this study described a finTRIM FTR36, which can activate IFN-pathways and stimulate ISGs to provide host defense against viral infections.
Collapse
Affiliation(s)
- Bo Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Shitian Huo
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Wanmeng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Fang Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Yuanan Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Zhen Xu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Xueqin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China.
| |
Collapse
|
35
|
Jiang N, Fan Y, Zhou Y, Liu W, Robert J, Zeng L. Rag1 and rag2 gene expressions identify lymphopoietic tissues in juvenile and adult Chinese giant salamander (Andrias davidianus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:24-35. [PMID: 29800626 DOI: 10.1016/j.dci.2018.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Rag1 and rag2 are two closely linked recombination activating genes required for V(D)J recombination of antigen receptors in immature lymphocytes, whose expression can serve as marker to identify the lymphopoietic tissues. To study the development of lymphopoietic tissues in Chinese giant salamander (Andrias davidianus), the Chinese giant salamander rag1 and rag2 coding sequences were cloned and determined. High transcript levels of rag1 and rag2 were co-detected in the thymus before 14 months of age, whereas levels were lower in spleen, liver and kidney at all stage of development. The spatial expression patterns of rag1 and rag2 were studied in combination with igY and tcrβ gene expression using in situ hybridization. Significant transcript signals for rag1, rag2, tcrβ and igY were detected not only in the thymus and spleen but also the liver and kidney of juvenile and adult Chinese giant salamanders, which suggests that cells of lymphocyte lineage are present in multiple tissues of the Chinese giant salamander. This implies that lymphopoiesis may take place in these tissues. The tissue morphology of thymus suggested that the branched thymic primordium developed into mature organ with the development of thymocyte from juvenile to adult. These results not only confirm that as expected the thymus and spleen are primordial lymphopoietic tissues but also suggest that the liver and kidney provide site of lymphocyte differentiation in Chinese giant salamander.
Collapse
Affiliation(s)
- Nan Jiang
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Yuding Fan
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Yong Zhou
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Wenzhi Liu
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, New York 14642, USA.
| | - Lingbing Zeng
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China.
| |
Collapse
|
36
|
Stilwell NK, Whittington RJ, Hick PM, Becker JA, Ariel E, van Beurden S, Vendramin N, Olesen NJ, Waltzek TB. Partial validation of a TaqMan real-time quantitative PCR for the detection of ranaviruses. DISEASES OF AQUATIC ORGANISMS 2018; 128:105-116. [PMID: 29733025 DOI: 10.3354/dao03214] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ranaviruses are globally emerging pathogens negatively impacting wild and cultured fish, amphibians, and reptiles. Although conventional and diagnostic real-time PCR (qPCR) assays have been developed to detect ranaviruses, these assays often have not been tested against the known diversity of ranaviruses. Here we report the development and partial validation of a TaqMan real-time qPCR assay. The primers and TaqMan probe targeted a conserved region of the major capsid protein (MCP) gene. A series of experiments using a 10-fold dilution series of Frog virus 3 (FV3) MCP plasmid DNA revealed linearity over a range of 7 orders of magnitude (107-101), a mean correlation coefficient (R2) of >0.99, and a mean efficiency of 96%. The coefficient of variation of intra- and inter-assay variability ranged from <0.1-3.5% and from 1.1-2.3%, respectively. The analytical sensitivity was determined to be 10 plasmid copies of FV3 DNA. The qPCR assay detected a panel of 33 different ranaviral isolates originating from fish, amphibian, and reptile hosts from all continents excluding Africa and Antarctica, thereby representing the global diversity of ranaviruses. The assay did not amplify highly divergent ranaviruses, members of other iridovirus genera, or members of the alloherpesvirus genus Cyprinivirus. DNA from fish tissue homogenates previously determined to be positive or negative for the ranavirus Epizootic hematopoietic necrosis virus by virus isolation demonstrated a diagnostic sensitivity of 95% and a diagnostic specificity of 100%. The reported qPCR assay provides an improved expedient diagnostic tool and can be used to elucidate important aspects of ranaviral pathogenesis and epidemiology in clinically and sublinically affected fish, amphibians, and reptiles.
Collapse
Affiliation(s)
- Natalie K Stilwell
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ranavirus genotypes in the Netherlands and their potential association with virulence in water frogs (Pelophylax spp.). Emerg Microbes Infect 2018; 7:56. [PMID: 29615625 PMCID: PMC5882854 DOI: 10.1038/s41426-018-0058-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/04/2017] [Accepted: 02/25/2018] [Indexed: 12/15/2022]
Abstract
Ranaviruses are pathogenic viruses for poikilothermic vertebrates worldwide. The identification of a common midwife toad virus (CMTV) associated with massive die-offs in water frogs (Pelophylax spp.) in the Netherlands has increased awareness for emerging viruses in amphibians in the country. Complete genome sequencing of 13 ranavirus isolates collected from ten different sites in the period 2011–2016 revealed three CMTV groups present in distinct geographical areas in the Netherlands. Phylogenetic analysis showed that emerging viruses from the northern part of the Netherlands belonged to CMTV-NL group I. Group II and III viruses were derived from the animals located in the center-east and south of the country, and shared a more recent common ancestor to CMTV-amphibian associated ranaviruses reported in China, Italy, Denmark, and Switzerland. Field monitoring revealed differences in water frog host abundance at sites where distinct ranavirus groups occur; with ranavirus-associated deaths, host counts decreasing progressively, and few juveniles found in the north where CMTV-NL group I occurs but not in the south with CMTV-NL group III. Investigation of tandem repeats of coding genes gave no conclusive information about phylo-geographical clustering, while genetic analysis of the genomes revealed truncations in 17 genes across CMTV-NL groups II and III compared to group I. Further studies are needed to elucidate the contribution of these genes as well as environmental variables to explain the observed differences in host abundance.
Collapse
|
38
|
Ke F, Gui JF, Chen ZY, Li T, Lei CK, Wang ZH, Zhang QY. Divergent transcriptomic responses underlying the ranaviruses-amphibian interaction processes on interspecies infection of Chinese giant salamander. BMC Genomics 2018; 19:211. [PMID: 29558886 PMCID: PMC5861657 DOI: 10.1186/s12864-018-4596-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background Ranaviruses (family Iridoviridae, nucleocytoplasmic large DNA viruses) have been reported as promiscuous pathogens of cold-blooded vertebrates. Rana grylio virus (RGV, a ranavirus), from diseased frog Rana grylio with a genome of 105.79 kb and Andrias davidianus ranavirus (ADRV), from diseased Chinese giant salamander (CGS) with a genome of 106.73 kb, contains 99% homologous genes. Results To uncover the differences in virus replication and host responses under interspecies infection, we analyzed transcriptomes of CGS challenged with RGV and ADRV in different time points (1d, 7d) for the first time. A total of 128,533 unigenes were obtained from 820,858,128 clean reads. Transcriptome analysis revealed stronger gene expression of RGV than ADRV at 1 d post infection (dpi), which was supported by infection in vitro. RGV replicated faster and had higher titers than ADRV in cultured CGS cell line. RT-qPCR revealed the RGV genes including the immediate early gene (RGV-89R) had higher expression level than that of ADRV at 1 dpi. It further verified the acute infection of RGV in interspecies infection. The number of differentially expressed genes and enriched pathways from RGV were lower than that from ADRV, which reflected the variant host responses at transcriptional level. No obvious changes of key components in pathway “Antigen processing and presentation” were detected for RGV at 1 dpi. Contrarily, ADRV infection down-regulated the expression levels of MHC I and CD8. The divergent host immune responses revealed the differences between interspecies and natural infection, which may resulted in different fates of the two viruses. Altogether, these results revealed the differences in transcriptome responses among ranavirus interspecies infection of amphibian and new insights in DNA virus-host interactions in interspecies infection. Conclusion The DNA virus (RGV) not only expressed self-genes and replicated quickly after entry into host under interspecies infection, but also avoided the over-activation of host responses. The strategy could gain time for the survival of interspecies pathogen, and may provide opportunity for its adaptive evolution and interspecies transmission. Electronic supplementary material The online version of this article (10.1186/s12864-018-4596-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhong-Yuan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Tao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Cun-Ke Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zi-Hao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
39
|
Nutritional and medicinal characteristics of Chinese giant salamander ( Andrias davidianus ) for applications in healthcare industry by artificial cultivation: A review. FOOD SCIENCE AND HUMAN WELLNESS 2018. [DOI: 10.1016/j.fshw.2018.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Chen ZY, Li T, Gao XC, Wang CF, Zhang QY. Protective Immunity Induced by DNA Vaccination against Ranavirus Infection in Chinese Giant Salamander Andrias davidianus. Viruses 2018; 10:v10020052. [PMID: 29364850 PMCID: PMC5850359 DOI: 10.3390/v10020052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/10/2018] [Accepted: 01/24/2018] [Indexed: 12/24/2022] Open
Abstract
Andrias davidianus ranavirus (ADRV) is an emerging viral pathogen that causes severe systemic hemorrhagic disease in Chinese giant salamanders. There is an urgent need for developing an effective vaccine against this fatal disease. In this study, DNA vaccines containing the ADRV 2L gene (pcDNA-2L) and the 58L gene (pcDNA-58L) were respectively constructed, and their immune protective effects were evaluated in Chinese giant salamanders. In vitro and in vivo expression of the vaccine plasmids were confirmed in transfected cells and muscle tissues of vaccinated Chinese giant salamanders by using immunoblot analysis or RT-PCR. Following ADRV challenge, the Chinese giant salamanders vaccinated with pcDNA-2L showed a relative percent survival (RPS) of 66.7%, which was significant higher than that in Chinese giant salamanders immunized with pcDNA-58L (RPS of 3.3%). Moreover, the specific antibody against ADRV was detected in Chinese giant salamanders vaccinated with pcDNA-2L at 14 and 21 days post-vaccination by indirect enzyme-linked immunosorbent assay (ELISA). Transcriptional analysis revealed that the expression levels of immune-related genes including type I interferon (IFN), myxovirus resistance (Mx), major histocompatibility complex class IA (MHCIA), and immunoglobulin M (IgM) were strongly up-regulated after vaccination with pcDNA-2L. Furthermore, vaccination with pcDNA-2L significantly suppressed the virus replication, which was seen by a low viral load in the spleen of Chinese giant salamander survivals after ADRV challenge. These results indicated that pcDNA-2L could induce a significant innate immune response and an adaptive immune response involving both humoral and cell-mediated immunity that conferred effective protection against ADRV infection, and might be a potential vaccine candidate for controlling ADRV disease in Chinese giant salamanders.
Collapse
Affiliation(s)
- Zhong-Yuan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Tao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xiao-Chan Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Chen-Fei Wang
- Wang's Giant Salamander Breeding Professional Cooperative, Shiyan 442013, China.
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
41
|
Kwon S, Park J, Choi WJ, Koo KS, Lee JG, Park D. First case of ranavirus-associated mass mortality in a natural population of the Huanren frog (Rana huanrenensis) tadpoles in South Korea. Anim Cells Syst (Seoul) 2017. [DOI: 10.1080/19768354.2017.1376706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Sera Kwon
- Department of Biology, Kangwon National University, Chuncheon, South Korea
| | - Jaejin Park
- Department of Biology, Kangwon National University, Chuncheon, South Korea
| | - Woo-Jin Choi
- Department of Biology, Kangwon National University, Chuncheon, South Korea
| | - Kyo-Soung Koo
- Department of Biology, Kangwon National University, Chuncheon, South Korea
| | - Jin-Gu Lee
- Gyeonggido Agricultural Research and Extension Services, Hwaseong, South Korea
| | - Daesik Park
- Division of Science Education, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
42
|
Wang S, Liu C, Wilson AB, Zhao N, Li X, Zhu W, Gao X, Liu X, Li Y. Pathogen richness and abundance predict patterns of adaptive major histocompatibility complex variation in insular amphibians. Mol Ecol 2017; 26:4671-4685. [PMID: 28734069 DOI: 10.1111/mec.14242] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 06/01/2017] [Accepted: 06/19/2017] [Indexed: 12/26/2022]
Abstract
The identification of the factors responsible for genetic variation and differentiation at adaptive loci can provide important insights into the evolutionary process and is crucial for the effective management of threatened species. We studied the impact of environmental viral richness and abundance on functional diversity and differentiation of the MHC class Ia locus in populations of the black-spotted pond frog (Pelophylax nigromaculatus), an IUCN-listed species, on 24 land-bridge islands of the Zhoushan Archipelago and three nearby mainland sites. We found a high proportion of private MHC alleles in mainland and insular populations, corresponding to 32 distinct functional supertypes, and strong positive selection on MHC antigen-binding sites in all populations. Viral pathogen diversity and abundance were reduced at island sites relative to the mainland, and islands housed distinctive viral communities. Standardized MHC diversity at island sites exceeded that found at neutral microsatellites, and the representation of key functional supertypes was positively correlated with the abundance of specific viruses in the environment (Frog virus 3 and Ambystoma tigrinum virus). These results indicate that pathogen-driven diversifying selection can play an important role in maintaining functionally important MHC variation following island isolation, highlighting the importance of considering functionally important genetic variation and host-pathogen associations in conservation planning and management.
Collapse
Affiliation(s)
- Supen Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Conghui Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Anthony B Wilson
- Department of Biology, Brooklyn College and The Graduate Center, City University of New York, Brooklyn, NY, USA
| | - Na Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xianping Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xu Gao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yiming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Claytor SC, Subramaniam K, Landrau-Giovannetti N, Chinchar VG, Gray MJ, Miller DL, Mavian C, Salemi M, Wisely S, Waltzek TB. Ranavirus phylogenomics: Signatures of recombination and inversions among bullfrog ranaculture isolates. Virology 2017; 511:330-343. [PMID: 28803676 DOI: 10.1016/j.virol.2017.07.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 01/23/2023]
Abstract
Ranaviruses are emerging pathogens of fish, amphibians, and reptiles that threaten aquatic animal industries and wildlife worldwide. Our objective was to genetically characterize ranaviruses isolated during separate bullfrog Lithobates catesbeianus die-offs that occurred eight years apart on the same North American farm. The earlier outbreak was due to a highly pathogenic strain of common midwife toad virus (CMTV) previously known only from Europe and China. The later outbreak was due to a chimeric ranavirus that displayed a novel genome arrangement and a DNA backbone typical for Frog virus 3 (FV3) strains except for interspersed fragments acquired through recombination with the CMTV isolated earlier. Both bullfrog ranaviruses are more pathogenic than wild-type FV3 suggesting recombination may have resulted in the increased pathogenicity observed in the ranavirus isolated in the later outbreak. Our study underscores the role international trade in farmed bullfrogs may have played in the global dissemination of highly pathogenic ranaviruses.
Collapse
Affiliation(s)
- Sieara C Claytor
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, USA
| | | | | | - Matthew J Gray
- Center for Wildlife Health, University of Tennessee, Knoxville, TN, USA
| | - Debra L Miller
- Center for Wildlife Health, University of Tennessee, Knoxville, TN, USA
| | - Carla Mavian
- Department of Pathology, Immunology, and Laboratory Medicine, and Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, and Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Samantha Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Thomas B Waltzek
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, USA.
| |
Collapse
|
44
|
Vaccination with Recombinant Baculovirus Expressing Ranavirus Major Capsid Protein Induces Protective Immunity in Chinese Giant Salamander, Andrias davidianus. Viruses 2017; 9:v9080195. [PMID: 28757575 PMCID: PMC5580452 DOI: 10.3390/v9080195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 11/16/2022] Open
Abstract
The Chinese giant salamander iridovirus (CGSIV), belonging to the genus Ranavirus in the family Iridoviridae, is the causative agent of an emerging infectious disease causing high mortality of more than 90% and economic losses in Chinese giant salamanders in China. In this study, a recombinant baculovirus-based vaccine expressing the CGSIV major capsid protein (MCP) was developed and its protective immunity in Chinese giant salamanders was evaluated. The recombinant Autographacalifornica nucleopolyhedrosis virus (AcNPV), expressing CGSIV MCP, designated as AcNPV-MCP, was generated with the highest titers of 1 × 10⁸ plaque forming units/mL (PFU/mL) and confirmed by Western blot and indirect immunofluorescence (IIF) assays. Western blot analysis revealed that the expressed MCP reacted with mouse anti-MCP monoclonal antibodies at the band of about 53 kDa. The results of IIF indicated that the MCP was expressed in the infected Spodoptera frugiperda 9 (Sf9) cells with the recombinant baculovirus, and the Chinese giant salamander muscle cells also transduced with the AcNPV-MCP. Immunization with the recombinant baculovirus of AcNPV-MCP elicited robust specific humoral immune responses detected by ELISA and neutralization assays and potent cellular immune responses in Chinese giant salamanders. Importantly, the effective immunization conferred highly protective immunity for Chinese giant salamanders against CGSIV challenge and produced a relative percent of survival rate of 84%. Thus, the recombinant baculovirus expressing CGSIV MCP can induce significant immune responses involving both humoral and cell-mediated immunity in Chinese giant salamanders and might represent a potential baculovirus based vaccine candidate for Chinese giant salamanders against CGSIV.
Collapse
|
45
|
Li WT, Chang HW, Pang VF, Wang FI, Liu CH, Chen TY, Guo JC, Wada T, Jeng CR. Mycolactone-producing Mycobacterium marinum infection in captive Hong Kong warty newts and pathological evidence of impaired host immune function. DISEASES OF AQUATIC ORGANISMS 2017; 123:239-249. [PMID: 28322210 DOI: 10.3354/dao03092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A mass mortality event of captive Hong Kong warty newts Paramesotriton hongkongensis with non-granulomatous necrotic lesions occurred in Taipei Zoo, Taiwan, in 2014. Clinically, the sick newts were lethargic and often covered with water mold Saprolegnia sp. on the skin of the body trunk or extremities. Predominant pathological findings were multifocal non-granulomatous necrotic lesions in the liver, spleen, and kidneys and severe skin infection with Saprolegnia sp., with deep invasion and involvement of underlying muscles. The possibility of ranavirus infection was ruled out by negative PCR results. Unexpectedly, abundant intralesional acid-fast positive bacilli were found in the necrotic lesions of the liver, spleen, and kidney in all 14 sick newts. PCR targeting the hsp65, ITS region, and partial 16S rRNA genes was performed, and the sequence identity from amplified amplicons of hsp65 and partial 16S rRNA genes was 100% identical to that of the corresponding gene fragment of Mycobacterium marinum. Further molecular investigations demonstrated that the current M. marinum was a mycolactone-producing mycobacterium with the presence of esxA/esxB genes. Mycolactone is a plasmid-encoded, immunosuppressive, and cytotoxic toxin. The possible immunosuppression phenomenon characterized by systemic non-granulomatous necrotic lesions caused by M. marinum and the unusual deep invasive infection caused by water mold might be associated with the immunosuppressive effect of mycolactone. Therefore, it should be noted that non-granulomatous necrotic lesions in amphibians can be caused not only by ranavirus infection but also by mycobacteriosis.
Collapse
Affiliation(s)
- Wen-Ta Li
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hernández-Gómez O, Kimble SJA, Briggler JT, Williams RN. Characterization of the Cutaneous Bacterial Communities of Two Giant Salamander Subspecies. MICROBIAL ECOLOGY 2017; 73:445-454. [PMID: 27677893 DOI: 10.1007/s00248-016-0859-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/09/2016] [Indexed: 05/21/2023]
Abstract
Pathogens currently threaten the existence of many amphibian species. In efforts to combat global declines, researchers have characterized the amphibian cutaneous microbiome as a resource for disease management. Characterization of microbial communities has become useful in studying the links between organismal health and the host microbiome. Hellbender salamanders (Cryptobranchus alleganiensis) provide an ideal system to explore the cutaneous microbiome as this species requires extensive conservation management across its range. In addition, the Ozark hellbender subspecies (Cryptobranchus alleganiensis bishopi) exhibits chronic wounds hypothesized to be caused by bacterial infections, whereas the eastern hellbender (Cryptobranchus alleganiensis alleganiensis) does not. We assessed the cutaneous bacterial microbiome of both subspecies at two locations in the state of Missouri, USA. Through 16S rRNA gene-based amplicon sequencing, we detected more than 1000 distinct operational taxonomic units (OTUs) in the cutaneous and environmental bacterial microbiome. Phylogenetic and abundance-based dissimilarity matrices identified differences in the bacterial communities between the two subspecies, but only the abundance-based dissimilarity matrix identified differences between wounds and healthy skin on Ozark hellbenders. The higher abundance of OTUs on Ozark wounds suggests that commensal bacteria present on the skin and environment may be opportunistically colonizing the wounds. This brief exploration of the hellbender cutaneous bacterial microbiome provides foundational support for future studies seeking to understand the hellbender cutaneous bacterial microbiome and the role of the bacterial microbiota on chronic wounds of Ozark hellbenders.
Collapse
Affiliation(s)
- Obed Hernández-Gómez
- Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, IN, 47907, USA.
| | - Steven J A Kimble
- Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, IN, 47907, USA
| | - Jeffrey T Briggler
- Missouri Department of Conservation, 2901 W. Truman Blvd, Jefferson City, MO, 65109, USA
| | - Rod N Williams
- Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, IN, 47907, USA
| |
Collapse
|
47
|
Yu XB, Chen XH, Shan LP, Hao K, Wang GX. In vitro antiviral efficacy of moroxydine hydrochloride and ribavirin against grass carp reovirus and giant salamander iridovirus. DISEASES OF AQUATIC ORGANISMS 2016; 121:189-199. [PMID: 27786157 DOI: 10.3354/dao03053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Moroxydine hydrochloride (Mor) and ribavirin (Rib) have been reported to exhibit multi-antiviral activities against DNA and RNA viruses, but their antiviral activities and pharmacologies have seldom been studied in aquaculture. This paper has selected 3 aquatic viruses including a double-stranded RNA virus (grass carp reovirus, GCRV), a single-stranded RNA virus (spring viraemia of carp virus, SVCV) and a DNA virus (giant salamander iridovirus, GSIV) for antiviral testing. The results showed that Mor and Rib can effectively control the infection of GCRV and GSIV in respective host cells. Further study was undertaken to explore the antivirus efficiencies and pharmacological mechanisms of Mor and Rib on GCRV and GSIV in vitro. Briefly, compounds showed over 50% protective effects at 15.9 µg ml-1 except for the group of GSIV-infected epithelioma papulosum cyprinid (EPC) cells treated with Mor. Moreover, Mor and Rib blocked the virus-induced cytopathic effects and apoptosis in host cells to keep the normal cellular structure. The expression of VP1 (GCRV) and major capsid protein (MCP; GSIV) gene was also significantly inhibited in the virus-infected cells when treated with Mor and Rib. Cytotoxicity assay verified the 2 compounds had no toxic effects on grass carp ovary (GCO) cells and EPC cells at ≤96 µg ml-1. In conclusion, these results indicated that exposing GCRV-infected GCO cells and GSIV-infected EPC cells to Mor and Rib could elicit significant antiviral responses, and the 2 compounds have been shown to be promising agents for viral control in the aquaculture industry.
Collapse
Affiliation(s)
- Xiao-Bo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | | | | | | | | |
Collapse
|
48
|
Price SJ, Garner TWJ, Cunningham AA, Langton TES, Nichols RA. Reconstructing the emergence of a lethal infectious disease of wildlife supports a key role for spread through translocations by humans. Proc Biol Sci 2016; 283:rspb.2016.0952. [PMID: 27683363 PMCID: PMC5046891 DOI: 10.1098/rspb.2016.0952] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022] Open
Abstract
There have been few reconstructions of wildlife disease emergences, despite their extensive impact on biodiversity and human health. This is in large part attributable to the lack of structured and robust spatio-temporal datasets. We overcame logistical problems of obtaining suitable information by using data from a citizen science project and formulating spatio-temporal models of the spread of a wildlife pathogen (genus Ranavirus, infecting amphibians). We evaluated three main hypotheses for the rapid increase in disease reports in the UK: that outbreaks were being reported more frequently, that climate change had altered the interaction between hosts and a previously widespread pathogen, and that disease was emerging due to spatial spread of a novel pathogen. Our analysis characterized localized spread from nearby ponds, consistent with amphibian dispersal, but also revealed a highly significant trend for elevated rates of additional outbreaks in localities with higher human population density—pointing to human activities in also spreading the virus. Phylogenetic analyses of pathogen genomes support the inference of at least two independent introductions into the UK. Together these results point strongly to humans repeatedly translocating ranaviruses into the UK from other countries and between UK ponds, and therefore suggest potential control measures.
Collapse
Affiliation(s)
- Stephen J Price
- UCL Genetics Institute, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK Institute of Zoology, Zoological Society of London, London NW1 4RY, UK School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | | | | | - Tom E S Langton
- Herpetofauna Consultants International, Triton House, Bramfield, Halesworth, Suffolk IP19 9AE, UK
| | - Richard A Nichols
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
49
|
Du J, Wang L, Wang Y, Shen J, Pan C, Meng Y, Yang C, Ji H, Dong W. Autophagy and apoptosis induced by Chinese giant salamander (Andrias davidianus) iridovirus (CGSIV). Vet Microbiol 2016; 195:87-95. [PMID: 27771075 DOI: 10.1016/j.vetmic.2016.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/04/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023]
Abstract
The outbreak of Chinese Giant Salamander (Andrias davidianus, CGS) Iridovirus (CGSIV) caused massive death of CGSs. However, some CGSs with low level of CGSIV usually could survive. In our study, major capsid protein (MCP) DNA replicates of CGSIV in shedding skin were employed to assess the relative content of CGSIV in the living CGSs by qPCR. Furthermore, the examinations of autophagy and apoptosis in CGSs in vivo and in the primary renal cells in vitro were performed, respectively. The results showed that the relative contents of CGSIV in the shedding skin could reflect those in liver, spleen, and kidney of the CGSs. In these tissues of the CGSs with low-level replicates of CGSIV, there were not obviously macroscopic lesions. But the irregularly-shaped vesicles perhaps involving in autophagosome were observed by transmission electron microscopy (TEM). The LC3B protein displayed uneven distribution by Immunohistochemistry and the level mRNA of Atg5 was higher in these tissues than that in the tissues of healthy CGSs using qRT-PCR. Meanwhile, the apoptosis also appeared in these tissues by TUNEL staining and higher level mRNA of type I IFN were detected in these tissues using qRT-PCR. Further, both the expression level of LC3B II protein and Atg5 mRNA increased significantly at 2h after the virus infected the primary renal cells from the health CGSs in vitro. In addition, apoptosis and type I IFN mRNA began to increase significantly at 4h after the virus infected the renal cells. It was suggested that autophagy may be a pivotal role for survival of CGSIV in the CGSs during early infection and the rapid proliferation of CGSIV could be inhibited by innate immune response and apoptosis.
Collapse
Affiliation(s)
- Jian Du
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China
| | - Liqing Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China
| | - Yuanxian Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China
| | - Jian Shen
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China
| | - Chuanyin Pan
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Changming Yang
- Animal Husbandry and Veterinary Station of Chenggu County, Hanzhong 723200, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
50
|
Zhang L, Jiang W, Wang QJ, Zhao H, Zhang HX, Marcec RM, Willard ST, Kouba AJ. Reintroduction and Post-Release Survival of a Living Fossil: The Chinese Giant Salamander. PLoS One 2016; 11:e0156715. [PMID: 27258650 PMCID: PMC4892505 DOI: 10.1371/journal.pone.0156715] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/18/2016] [Indexed: 11/29/2022] Open
Abstract
Captive rearing and reintroduction / translocation are increasingly used as tools to supplement wild populations of threatened species. Reintroducing captive-reared Chinese giant salamanders may help to augment the declining wild populations and conserve this critically endangered amphibian. We released 31 captive-reared juvenile giant salamanders implanted with VHF radio transmitters at the Heihe River (n = 15) and the Donghe River (n = 16) in the Qinling Mountains of central China. Salamanders were monitored every day for survival from April 28th 2013 to September 3rd 2014. We attempted to recapture all living individuals by the end of the study, measured their body mass and total body length, and checked for abnormalities and presence of external parasites. Two salamanders at the Heihe River and 10 animals at the Donghe River survived through the project timeline. Nine salamanders were confirmed dead, while the status of the other 10 animals was undetermined. The annual survival rate of giant salamanders at the Donghe River (0.702) was 1.7-fold higher than that at the Heihe River (0.405). Survival increased as individuals were held longer following surgery, whereas body mass did not have a significant impact on survival rate. All salamanders recaptured from the Donghe River (n = 8) increased in mass (0.50 ± 0.13 kg) and length (5.5 ± 1.5 cm) after approximately 11 months in the wild, and they were only 7% lighter than wild animals of the same length (mean residual = -0.033 ± 0.025). Our results indicate that captive-reared Chinese giant salamanders can survive in the wild one year after release and adequate surgical recovery time is extremely important to post-release survival. Future projects may reintroduce older juveniles to achieve better survival and longer monitoring duration.
Collapse
Affiliation(s)
- Lu Zhang
- Biochemistry, Molecular Biology, Entomology, and Plant Pathology Department, Mississippi State University, Mississippi State, Mississippi, United States of America
- Conservation and Research Department, Memphis Zoological Society, Memphis, Tennessee, United States of America
| | - Wei Jiang
- Shaanxi Institute of Zoology, Xi’an, Shaanxi, China
| | - Qi-Jun Wang
- Shaanxi Institute of Zoology, Xi’an, Shaanxi, China
| | - Hu Zhao
- Shaanxi Institute of Zoology, Xi’an, Shaanxi, China
| | | | - Ruth M. Marcec
- Biochemistry, Molecular Biology, Entomology, and Plant Pathology Department, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Scott T. Willard
- Biochemistry, Molecular Biology, Entomology, and Plant Pathology Department, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Andrew J. Kouba
- Conservation and Research Department, Memphis Zoological Society, Memphis, Tennessee, United States of America
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Mississippi State, Mississippi, United States of America
- * E-mail:
| |
Collapse
|