1
|
Yu T, Xie M, Luo K, Zhang X, Gao W, Xu Q, Zhang S. Mechanism of Chinese sturgeon IFN-γ inhibition on Mycobacterium marinum (Acipenser sinensis). FISH & SHELLFISH IMMUNOLOGY 2024; 147:109436. [PMID: 38369071 DOI: 10.1016/j.fsi.2024.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
IFN-γ plays a crucial role in both innate and adaptive immune responses and is a typical Th1 cytokine that promotes Th1 response and activates macrophages. When macrophages were incubated with IFN-γ, their phagocytosis ratio against Mycobacterium marinum increased significantly, as observed under fluorescence microscopy. The macrophages engulfed a large number of M. marinum. The proliferative ability of macrophages treated with IFN-γ was significantly weaker on the 4th and 7th day after phagocytosis and subsequent re-infection with marine chlamydia (P < 0.001). This suggests that IFN-γ enhances the phagocytosis and killing ability of macrophages against M. marinum. IFN-γ protein also significantly increased the production of reactive oxygen species (H2O2) and nitric oxide (NO) by macrophages. Additionally, the expression levels of toll-like receptor 2 (tlr2) and caspase 8 (casp8) were significantly higher in macrophages after IFN-γ incubation compared to direct infection after 12 h of M. marinum stimulation. Apoptosis was also observed to a higher degree in IFN-γ incubated macrophage. Moreover, mRNA expression of major histocompatibility complex (MHC) molecules produced by macrophages after IFN-γ incubation was significantly higher than direct infection. This indicates that IFN-γ enhances antigen presentation by upregulating MHC expression. It also upregulates tlr2 and casp8 expression through the TLR2 signaling pathway to induce apoptosis in macrophages. The pro-inflammatory cytokine showed an initial increase followed by a decline, suggesting that IFN-γ enhances the immune response of macrophages against M. marinum infection. On the other hand, the anti-inflammatory cytokine showed a delayed increase, significantly reducing the expression of pro-inflammatory cytokines. The expression of both cytokines balanced each other and together regulated the inflammatory reaction against M. marinum infection.
Collapse
Affiliation(s)
- Ting Yu
- Institute of Chinese Sturgeon Disease, Yangtze University, Jingzhou, 434024, China
| | - Meng Xie
- Institute of Chinese Sturgeon Disease, Yangtze University, Jingzhou, 434024, China
| | - Kai Luo
- Institute of Chinese Sturgeon Disease, Yangtze University, Jingzhou, 434024, China
| | - Xiao Zhang
- Institute of Chinese Sturgeon Disease, Yangtze University, Jingzhou, 434024, China
| | - Weihua Gao
- Institute of Chinese Sturgeon Disease, Yangtze University, Jingzhou, 434024, China; Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang 524088, China
| | - Qiaoqing Xu
- Institute of Chinese Sturgeon Disease, Yangtze University, Jingzhou, 434024, China.
| | - Shuhuan Zhang
- Sturgeon Healthy Breeding and Medicinal Value Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|