1
|
Scarlatescu F, Scarlatescu E, Tomescu DR, Bartos D. The Correlation of Hemostatic Parameters with the Development of Early Sepsis-Associated Encephalopathy. A Retrospective Observational Study. J Crit Care Med (Targu Mures) 2024; 10:329-336. [PMID: 39829725 PMCID: PMC11740703 DOI: 10.2478/jccm-2024-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/28/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Sepsis-associated encephalopathy (SAE) is one of the most common complications seen both in early and late stages of sepsis, with a wide spectrum of clinical manifestations ranging from mild neurological dysfunction to delirium and coma. The pathophysiology of SAE is still not completely understood, and the diagnosis can be challenging especially in early stages of sepsis and in patients with subtle symptoms. Aim of the study The objective of this study was to assess the coagulation profile in patients with early SAE and to compare the hemostatic parameters between septic patients with and without SAE in the first 24 hours from sepsis diagnosis. Material and methods This retrospective observational study included 280 patients with sepsis in the first 24 hours after sepsis diagnosis. A complete blood count was available in all patients; a complex hemostatic assessment including standard coagulation tests, plasmatic levels of coagulation factors, inhibitors, D-dimers, and Rotation thromboelastometry (ROTEM, Instrumentation Laboratory) was performed in a subgroup of patients. Results Early SAE was diagnosed in 184 patients (65.7%) and was correlated with a higher platelet count, after adjusting for age and leucocyte count. Compared to patients without neurological dysfunction, patients with early SAE presented a more active coagulation system revealed by faster propagation phase, increased clot firmness and elasticity with a higher platelet contribution to clot strength. The initiation of coagulation and clot lysis were not different between the groups. Conclusion In the early stages of sepsis, the development of SAE is correlated with increased systemic clotting activity where platelets seem to have an important role. More research is needed to investigate the role of platelets and the coagulation system in relation to the development of early SAE.
Collapse
Affiliation(s)
| | - Ecaterina Scarlatescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Dana Rodica Tomescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Daniela Bartos
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
2
|
Fu S, Yu W, Fu Q, Xu Z, Zhang S, Liang TB. Prognostic value of APTT combined with fibrinogen and creatinine in predicting 28-Day mortality in patients with septic shock caused by acute enteric perforation. BMC Surg 2023; 23:274. [PMID: 37700315 PMCID: PMC10498602 DOI: 10.1186/s12893-023-02165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/22/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Septic shock is one of the leading causes of mortality in intensive care units. This retrospective study was carried out to evaluate the association of clinical available factors with 28-day mortality. PATIENTS AND METHOD In this observational study, patients with perioperative septic shocks secondary to intra-abdominal infection caused by enteric perforation were included. A total of 328 sepsis patients were admitted to the surgical intensive care units from January 2012 to December 2016. A total of 138 patients met the enrolment criteria and were included in the study. The data of demographic, clinical and laboratory were all recorded. RESULT All these 138 patients received abdominal surgery prior to surgical intensive care units caused by acute enteric perforation. These patients were all met the diagnostic criteria of septic shock according to Sepsis-3. Statistical analysis showed that lactic acid, blood platelet, fibrinogen, creatinine and activated partial thromboplastin time were found to be associated with 28-day mortality. A combination of serum activated partial thromboplastin time combined with fibrinogen and creatinine could predict in-hospital 28-day mortality. The area under the curve of serum activated partial thromboplastin time combined with fibrinogen and creatinine is 0.875 (0.806-0.944). CONCLUSION In conclusion, this pilot study demonstrated that these factors can predict the prognosis of septic shock caused by enteric perforation. In order to reduce the mortality, surgeons and intensive care units physician may consider these data in perioperative period.
Collapse
Affiliation(s)
- Shuiqiao Fu
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun street 79th, Hangzhou, 310003, Zhejiang Province, China
| | - Wenqiao Yu
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun street 79th, Hangzhou, 310003, Zhejiang Province, China
| | - Qinghui Fu
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun street 79th, Hangzhou, 310003, Zhejiang Province, China
| | - Zhipeng Xu
- The Department of SICU, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun street 79th, Hangzhou, 310003, Zhejiang Province, China
| | - Shaoyang Zhang
- The Department of Emergency, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun street 79th, Hangzhou, 310003, Zhejiang Province, China
| | - Ting-Bo Liang
- The Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun street 79th, Hangzhou, 310003, Zhejiang Province, China.
| |
Collapse
|
3
|
Erdbrügger U, Hoorn EJ, Le TH, Blijdorp CJ, Burger D. Extracellular Vesicles in Kidney Diseases: Moving Forward. KIDNEY360 2023; 4:245-257. [PMID: 36821616 PMCID: PMC10103258 DOI: 10.34067/kid.0001892022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/18/2022] [Indexed: 12/23/2022]
Abstract
Extracellular vesicles (EVs) are evolving as novel cell mediators, biomarkers, and therapeutic targets in kidney health and disease. They are naturally derived from cells both within and outside the kidney and carry cargo which mirrors the state of the parent cell. Thus, they are potentially more sensitive and disease-specific as biomarkers and messengers in various kidney diseases. Beside their role as novel communicators within the nephron, they likely communicate between different organs affected by various kidney diseases. Study of urinary EVs (uEVs) can help to fill current knowledge gaps in kidney diseases. However, separation and characterization are challenged by their heterogeneity in size, shape, and cargo. Fortunately, more sensitive and direct EV measuring tools are in development. Many clinical syndromes in nephrology from acute to chronic kidney and glomerular to tubular diseases have been studied. Yet, validation of biomarkers in larger cohorts is warranted and simpler tools are needed. Translation from in vitro to in vivo studies is also urgently needed. The therapeutic role of uEVs in kidney diseases has been studied extensively in rodent models of AKI. On the basis of the current exponential growth of EV research, the field of EV diagnostics and therapeutics is moving forward.
Collapse
Affiliation(s)
- Uta Erdbrügger
- Division of Nephrology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Ewout J. Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thu H. Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Charles J. Blijdorp
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dylan Burger
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Weber B, Henrich D, Hildebrand F, Marzi I, Leppik L. THE ROLES OF EXTRACELLULAR VESICLES IN SEPSIS AND SYSTEMIC INFLAMMATORY RESPONSE SYNDROME. Shock 2023; 59:161-172. [PMID: 36730865 PMCID: PMC9940838 DOI: 10.1097/shk.0000000000002010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 10/05/2022] [Indexed: 02/04/2023]
Abstract
ABSTRACT Sepsis is a life-threatening organ dysfunction, caused by dysregulation of the host response to infection. To understand the underlying mechanisms of sepsis, the vast spectrum of extracellular vesicles (EVs) is gaining importance in this research field. A connection between EVs and sepsis was shown in 1998 in an endotoxemia pig model. Since then, the number of studies describing EVs as markers and mediators of sepsis increased steadily. Extracellular vesicles in sepsis could be friends and foes at the same time depending on their origin and cargo. On the one hand, transfer of EVs or outer membrane vesicles can induce sepsis or systemic inflammatory response syndrome with comparable efficiency as well-established methods, such as cecal ligation puncture or lipopolysaccharide injection. On the other hand, EVs could provide certain therapeutic effects, mediated via reduction of reactive oxygen species, inflammatory cytokines and chemokines, influence on macrophage polarization and apoptosis, as well as increase of anti-inflammatory cytokines. Moreover, EVs could be helpful in the diagnosis of sepsis. Extracellular vesicles of different cellular origin, such as leucocytes, macrophages, platelets, and granulocytes, have been suggested as potential sepsis biomarkers. They ensure the diagnosis of sepsis earlier than classical clinical inflammation markers, such as C-reactive protein, leucocytes, or IL-6. This review summarizes the three roles of EVs in sepsis-mediator/inducer, biomarker, and therapeutic tool.
Collapse
Affiliation(s)
- Birte Weber
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Frank Hildebrand
- Department of Trauma and Reconstructive Surgery, University Hospital RWTH Aachen. Aachen, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Liudmila Leppik
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Tian C, Wang K, Zhao M, Cong S, Di X, Li R. Extracellular vesicles participate in the pathogenesis of sepsis. Front Cell Infect Microbiol 2022; 12:1018692. [PMID: 36579343 PMCID: PMC9791067 DOI: 10.3389/fcimb.2022.1018692] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Sepsis is one of the leading causes of mortality worldwide and is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. The early diagnosis and effective treatment of sepsis still face challenges due to its rapid progression, dynamic changes, and strong heterogeneity among different individuals. To develop novel strategies to control sepsis, a better understanding of the complex mechanisms of sepsis is vital. Extracellular vesicles (EVs) are membrane vesicles released from cells through different mechanisms. In the disease state, the number of EVs produced by activated or apoptotic cells and the cargoes they carry were altered. They regulated the function of local or distant host cells in autocrine or paracrine ways. Current studies have found that EVs are involved in the occurrence and development of sepsis through multiple pathways. In this review, we focus on changes in the cargoes of EVs in sepsis, the regulatory roles of EVs derived from host cells and bacteria, and how EVs are involved in multiple pathological processes and organ dysfunction in sepsis. Overall, EVs have great application prospects in sepsis, such as early diagnosis of sepsis, dynamic monitoring of disease, precise therapeutic targets, and prevention of sepsis as a vaccine platform.
Collapse
Affiliation(s)
- Chang Tian
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Min Zhao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shan Cong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Di
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ranwei Li
- Department of Urinary Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China,*Correspondence: Ranwei Li,
| |
Collapse
|
6
|
Quaglia M, Fanelli V, Merlotti G, Costamagna A, Deregibus MC, Marengo M, Balzani E, Brazzi L, Camussi G, Cantaluppi V. Dual Role of Extracellular Vesicles in Sepsis-Associated Kidney and Lung Injury. Biomedicines 2022; 10:biomedicines10102448. [PMID: 36289710 PMCID: PMC9598620 DOI: 10.3390/biomedicines10102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles form a complex intercellular communication network, shuttling a variety of proteins, lipids, and nucleic acids, including regulatory RNAs, such as microRNAs. Transfer of these molecules to target cells allows for the modulation of sets of genes and mediates multiple paracrine and endocrine actions. EVs exert broad pro-inflammatory, pro-oxidant, and pro-apoptotic effects in sepsis, mediating microvascular dysfunction and multiple organ damage. This deleterious role is well documented in sepsis-associated acute kidney injury and acute respiratory distress syndrome. On the other hand, protective effects of stem cell-derived extracellular vesicles have been reported in experimental models of sepsis. Stem cell-derived extracellular vesicles recapitulate beneficial cytoprotective, regenerative, and immunomodulatory properties of parental cells and have shown therapeutic effects in experimental models of sepsis with kidney and lung involvement. Extracellular vesicles are also likely to play a role in deranged kidney-lung crosstalk, a hallmark of sepsis, and may be key to a better understanding of shared mechanisms underlying multiple organ dysfunction. In this review, we analyze the state-of-the-art knowledge on the dual role of EVs in sepsis-associated kidney/lung injury and repair. PubMed library was searched from inception to July 2022, using a combination of medical subject headings (MeSH) and keywords related to EVs, sepsis, acute kidney injury (AKI), acute lung injury (ALI), and acute respiratory distress syndrome (ARDS). Key findings are summarized into two sections on detrimental and beneficial mechanisms of actions of EVs in kidney and lung injury, respectively. The role of EVs in kidney-lung crosstalk is then outlined. Efforts to expand knowledge on EVs may pave the way to employ them as prognostic biomarkers or therapeutic targets to prevent or reduce organ damage in sepsis.
Collapse
Affiliation(s)
- Marco Quaglia
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Vito Fanelli
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | - Guido Merlotti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Andrea Costamagna
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | | | - Marita Marengo
- Nephrology and Dialysis Unit, ASL CN1, 12038 Savigliano, Italy
| | - Eleonora Balzani
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | - Luca Brazzi
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
- Correspondence: (G.C.); (V.C.)
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
- Correspondence: (G.C.); (V.C.)
| |
Collapse
|
7
|
Eustes AS, Dayal S. The Role of Platelet-Derived Extracellular Vesicles in Immune-Mediated Thrombosis. Int J Mol Sci 2022; 23:7837. [PMID: 35887184 PMCID: PMC9320310 DOI: 10.3390/ijms23147837] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Platelet-derived extracellular vesicles (PEVs) play important roles in hemostasis and thrombosis. There are three major types of PEVs described based on their size and characteristics, but newer types may continue to emerge owing to the ongoing improvement in the methodologies and terms used to define various types of EVs. As the literature on EVs is growing, there are continuing attempts to standardize protocols for EV isolation and reach consensus in the field. This review provides information on mechanisms of PEV production, characteristics, cellular interaction, and their pathological role, especially in autoimmune and infectious diseases. We also highlight the mechanisms through which PEVs can activate parent cells in a feedback loop.
Collapse
Affiliation(s)
- Alicia S. Eustes
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Sanjana Dayal
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Iowa City VA Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|
8
|
Weber B, Franz N, Marzi I, Henrich D, Leppik L. Extracellular vesicles as mediators and markers of acute organ injury: current concepts. Eur J Trauma Emerg Surg 2022; 48:1525-1544. [PMID: 33533957 PMCID: PMC7856451 DOI: 10.1007/s00068-021-01607-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Due to the continued high incidence and mortality rate worldwide, there is a need to develop new strategies for the quick, precise, and valuable recognition of presenting injury pattern in traumatized and poly-traumatized patients. Extracellular vesicles (EVs) have been shown to facilitate intercellular communication processes between cells in close proximity as well as distant cells in healthy and disease organisms. miRNAs and proteins transferred by EVs play biological roles in maintaining normal organ structure and function under physiological conditions. In pathological conditions, EVs change the miRNAs and protein cargo composition, mediating or suppressing the injury consequences. Therefore, incorporating EVs with their unique protein and miRNAs signature into the list of promising new biomarkers is a logical next step. In this review, we discuss the general characteristics and technical aspects of EVs isolation and characterization. We discuss results of recent in vitro, in vivo, and patients study describing the role of EVs in different inflammatory diseases and traumatic organ injuries. miRNAs and protein signature of EVs found in patients with acute organ injury are also debated.
Collapse
Affiliation(s)
- Birte Weber
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Niklas Franz
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Ingo Marzi
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Liudmila Leppik
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Karpman D, Tontanahal A. Extracellular vesicles in renal inflammatory and infectious diseases. Free Radic Biol Med 2021; 171:42-54. [PMID: 33933600 DOI: 10.1016/j.freeradbiomed.2021.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles can mediate cell-to-cell communication, or relieve the parent cell of harmful substances, in order to maintain cellular integrity. The content of extracellular vesicles includes miRNAs, mRNAs, growth factors, complement factors, cytokines, chemokines and receptors. These may contribute to inflammatory and infectious diseases by the exposure or transfer of potent effectors that induce vascular inflammation by leukocyte recruitment and thrombosis. Furthermore, vesicles release cytokines and induce their release from cells. Extracellular vesicles possess immune modulatory and anti-microbial properties, and induce receptor signaling in the recipient cell, not least by the transfer of pro-inflammatory receptors. Additionally, the vesicles may carry virulence factors systemically. Extracellular vesicles in blood and urine can contribute to the development of kidney diseases or exhibit protective effects. In this review we will describe the role of EVs in inflammation, thrombosis, immune modulation, angiogenesis, oxidative stress, renal tubular regeneration and infection. Furthermore, we will delineate their contribution to renal ischemia/reperfusion, vasculitis, glomerulonephritis, lupus nephritis, thrombotic microangiopathies, IgA nephropathy, acute kidney injury, urinary tract infections and renal transplantation. Due to their content of miRNAs and growth factors, or when loaded with nephroprotective modulators, extracellular vesicles have the potential to be used as therapeutics for renal regeneration.
Collapse
Affiliation(s)
- Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, 22185, Lund, Sweden.
| | - Ashmita Tontanahal
- Department of Pediatrics, Clinical Sciences Lund, Lund University, 22185, Lund, Sweden
| |
Collapse
|
10
|
Kronstadt SM, Pottash AE, Levy D, Wang S, Chao W, Jay SM. Therapeutic Potential of Extracellular Vesicles for Sepsis Treatment. ADVANCED THERAPEUTICS 2021; 4:2000259. [PMID: 34423113 PMCID: PMC8378673 DOI: 10.1002/adtp.202000259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Sepsis is a deadly condition lacking a specific treatment despite decades of research. This has prompted the exploration of new approaches, with extracellular vesicles (EVs) emerging as a focal area. EVs are nanosized, cell-derived particles that transport bioactive components (i.e., proteins, DNA, and RNA) between cells, enabling both normal physiological functions and disease progression depending on context. In particular, EVs have been identified as critical mediators of sepsis pathophysiology. However, EVs are also thought to constitute the biologically active component of cell-based therapies and have demonstrated anti-inflammatory, anti-apoptotic, and immunomodulatory effects in sepsis models. The dual nature of EVs in sepsis is explored here, discussing their endogenous roles and highlighting their therapeutic properties and potential. Related to the latter component, prior studies involving EVs from mesenchymal stem/stromal cells (MSCs) and other sources are discussed and emerging producer cells that could play important roles in future EV-based sepsis therapies are identified. Further, how methodologies could impact therapeutic development toward sepsis treatment to enhance and control EV potency is described.
Collapse
Affiliation(s)
- Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Alex E Pottash
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Sheng Wang
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Steven M Jay
- Fischell Department of Bioengineering and Program in Molecular and, Cell Biology, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| |
Collapse
|
11
|
Campello E, Zanetto A, Radu CM, Bulato C, Truma A, Spiezia L, Senzolo M, Garcia-Tsao G, Simioni P. Acute kidney injury is associated with increased levels of circulating microvesicles in patients with decompensated cirrhosis. Dig Liver Dis 2021; 53:879-888. [PMID: 33431230 PMCID: PMC11090178 DOI: 10.1016/j.dld.2020.12.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Microvesicles (MVs) play a role in inflammation, coagulation, and vascular homeostasis in liver disease. AIM To characterize circulating plasma MVs profile in patients with decompensated cirrhosis and acute kidney injury (AKI). METHODS We measured the levels of total, endothelial, platelet, tissue factor (TF)+, leukocyte and hepatocyte MVs by new generation flow-cytometry in a prospective cohort of patients with decompensated cirrhosis with and without AKI. RESULTS Eighty patients with decompensated cirrhosis were recruited (40 each with and without AKI). Patients with cirrhosis with AKI had significantly higher calcein+ (total), endothelial, and platelet-MVs. Conversely, TF+, leukocyte, and hepatocyte-MVs were comparable between groups. Resolution of AKI was associated with significantly decreased total and endothelial-MVs that became comparable with those in patients without AKI. Platelet MVs significantly decreased but remained higher compared to patients without AKI. TF+MVs significantly decreased and became lower than patients without AKI. Leukocyte and hepatocyte-MVs remained unchanged. Creatinine (OR 4.3 [95%CI 1.8-10.7]), MELD (OR 1.13 [95%CI 1.02-1.27]), any bleeding (OR 9.07 [95%CI 2.02-40.6]), and hepatocyte-MVs (OR 1.04 [95%CI 1.02-1.07]) were independently associated with 30-day mortality. CONCLUSION AKI worsened vascular and cellular homeostasis in patients with cirrhosis, particularly by inducing endothelial dysfunction and platelet activation. AKI did not worsen systemic inflammation and hepatocytes activation.
Collapse
Affiliation(s)
- Elena Campello
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Padova University Hospital, Padova, Italy
| | - Alberto Zanetto
- Digestive Disease Section, Internal Medicine, Yale School of Medicine, New Haven, CT, USA; VA-Connecticut Healthcare System, West Haven, CT, USA; Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Claudia M Radu
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Padova University Hospital, Padova, Italy
| | - Cristiana Bulato
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Padova University Hospital, Padova, Italy
| | - Addolorata Truma
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Padova University Hospital, Padova, Italy
| | - Luca Spiezia
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Padova University Hospital, Padova, Italy
| | - Marco Senzolo
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Guadalupe Garcia-Tsao
- Digestive Disease Section, Internal Medicine, Yale School of Medicine, New Haven, CT, USA; VA-Connecticut Healthcare System, West Haven, CT, USA
| | - Paolo Simioni
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Padova University Hospital, Padova, Italy.
| |
Collapse
|
12
|
Ma J, Yuan HX, Chen YT, Ning DS, Liu XJ, Peng YM, Chen C, Song YK, Jian YP, Li Y, Liu Z, Ou ZJ, Ou JS. Circulating endothelial microparticles: a promising biomarker of acute kidney injury after cardiac surgery with cardiopulmonary bypass. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:786. [PMID: 34268399 PMCID: PMC8246187 DOI: 10.21037/atm-20-7828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022]
Abstract
Background Current diagnostic strategies for acute kidney injury (AKI) after cardiac surgery with cardiopulmonary bypass (CPB) are nonspecific and limited. Previously, we demonstrated that circulating microparticles (MPs) in patients with valve heart disease (VHD) and congenital heart diseases (CHD) induce endothelial dysfunction and neutrophil chemotaxis, which may result in kidney injury. We also found that circulating MPs increase after cardiac surgery with CPB and are related to cardiac function. However, the relationship between circulating MPs and AKI after CPB is unknown. Methods Eighty-five patients undergoing cardiac surgery with CPB were enrolled. Patients were divided into AKI and non-AKI groups based on the serum creatinine levels at 12 h and 3 d post-CPB. Circulating MPs were isolated from plasma, and their levels including its subtypes were detected by flow cytometer. Independent risk factors for the CPB-associated AKI (CPB-AKI) were determined by multivariate logistic regression analysis. Receiver operating characteristic (ROC) analysis was used to measure the prognostic potential of CPB-AKI. Results The morbidity of AKI at 12 h and 3 d after cardiac surgery with CPB was 40% and 31.76%, respectively. The concentrations of total MPs and platelet-derived MPs (PMP) remained unchanged at 12 h and then increased at 3 d post-CPB, while that of endothelial-derived MPs (EMP) increased at both time points. In patients with AKI, PMP and EMP were elevated compared with the patients without AKI. However, no significant change was detected on monocyte-derived MPs (MMP) at 12 h and 3 d post-CPB. The logistic regression analysis showed that EMP was the independent risk factor for AKI both at 12 h and 3 d post-CPB. The area under ROC for the concentrations of EMP at 12 h and 3 d post-CPB was 0.86 and 0.91, with the specificity up to 0.88 and 0.91, respectively. Conclusions Circulating EMP may serve as a potential biomarker of AKI after cardiac surgery with CPB.
Collapse
Affiliation(s)
- Jian Ma
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Hao-Xiang Yuan
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Da-Sheng Ning
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Chao Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yuan-Kai Song
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zui Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
13
|
Behrens F, Holle J, Kuebler WM, Simmons S. Extracellular vesicles as regulators of kidney function and disease. Intensive Care Med Exp 2020; 8:22. [PMID: 33336297 PMCID: PMC7746786 DOI: 10.1186/s40635-020-00306-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) are small, lipid bilayer-delimited particles of cellular origin that recently gained increasing attention for their potential use as diagnostic biomarkers, and beyond that for their role in intercellular communication and as regulators of homeostatic and disease processes. In acute kidney injury (AKI) and chronic kidney disease (CKD), the potential use of EVs as diagnostic and prognostic markers has been evaluated in a series of clinical studies and contributions to pathophysiologic pathways have been investigated in experimental models. While EV concentrations in biofluids could not distinguish renal patients from healthy subjects or determine disease progression, specific EV subpopulations have been identified that may provide useful diagnostic and prognostic tools in AKI. Specific EV subpopulations are also associated with clinical complications in sepsis-induced AKI and in CKD. Beyond their role as biomarkers, pathophysiologic involvement of EVs has been shown in hemolytic uremic syndrome- and sepsis-induced AKI as well as in cardiovascular complications of CKD. On the other hand, some endogenously formed or therapeutically applied EVs demonstrate protective effects pointing toward their usefulness as emerging treatment strategy in kidney disease.
Collapse
Affiliation(s)
- Felix Behrens
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Johannes Holle
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10117, Berlin, Germany. .,The Keenan Research Centre for Biomedical Science at St. Michael's, Toronto, Canada. .,Departments of Surgery and Physiology, University of Toronto, Toronto, Canada.
| | - Szandor Simmons
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10117, Berlin, Germany
| |
Collapse
|
14
|
Sánchez-López V, Gao L, Ferrer-Galván M, Arellano-Orden E, Elías-Hernández T, Jara-Palomares L, Asensio-Cruz MI, Castro-Pérez MJ, Rodríguez-Martorell FJ, Lobo-Beristain JL, Ballaz-Quincoces A, López-Campos JL, Vila-Liante V, Otero-Candelera R. Differential biomarker profiles between unprovoked venous thromboembolism and cancer. Ann Med 2020; 52:310-320. [PMID: 32634035 PMCID: PMC7877930 DOI: 10.1080/07853890.2020.1779956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/08/2020] [Accepted: 05/31/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The relationship between cancer and venous thromboembolic disease (VTD) are complex because the activated coagulation factors are not only involved in thrombosis but also in malignant processes, such as angiogenesis and metastasis. OBJECTIVE To compare phenotypes of extracellular vesicles (EVs), and levels of D-dimer, soluble P-selectin (sP-selectin) and antigenic tissue factor (TF) between unprovoked VTD patients, who did not develop cancer during one-year follow-up, and those with advanced stage of cancer but not associated with VTD. METHODS A prospective study in which we included 138 unprovoked VTD patients and 67 advanced cancer patients, who did not develop thrombosis. Levels of EVs of different cellular origin (platelet, endothelium and leukocyte), EVs positive for tissue factor (TF) and P-selectin glycoprotein ligand 1 were quantified by flow cytometry. D-dimer, soluble P-selectin (sP-selectin) and antigenic TF were determined by ELISA. RESULTS TF-positive EVs, D-dimer, and sP-selectin were markedly elevated in unprovoked VTD patients compared to cancer patients without association with thrombosis. CONCLUSIONS Levels of TF-positive EVs, D-dimer and sP-selectin are able to discriminate between unprovoked VTD patients not related to cancer and cancer patients not associated with VTD. These results could lead to the application of EVs as biomarkers of both diseases. Key messages: Circulating EVs, specifically TF-positive EVs, in combination with plasmatic markers of hypercoagulable states, such as D-dimer, sP-selectin and antigen TF, are able to discriminate between cancer patients without thrombosis and patients with unprovoked VTD. Research fields could be opened. Future studies will assess if these biomarkers together serve as predicting thrombotic events in cancer populations.
Collapse
Affiliation(s)
- V. Sánchez-López
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Seville, Spain
| | - L. Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville, Spain
| | - M. Ferrer-Galván
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - E. Arellano-Orden
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Seville, Spain
| | - T. Elías-Hernández
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - L. Jara-Palomares
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Seville, Spain
| | - M. I. Asensio-Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - M. J. Castro-Pérez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - F. J. Rodríguez-Martorell
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | | | | | - J. L. López-Campos
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Seville, Spain
| | - V. Vila-Liante
- Instituto de Investigación Sanitaria, Hospital Universitario y Politécnico La Fe-Valencia, Valencia, Spain
| | - R. Otero-Candelera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Seville, Spain
| |
Collapse
|
15
|
Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol 2019; 34:11-30. [PMID: 29181712 PMCID: PMC6244861 DOI: 10.1007/s00467-017-3816-z] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles are cell-derived membrane particles ranging from 30 to 5,000 nm in size, including exosomes, microvesicles, and apoptotic bodies. They are released under physiological conditions, but also upon cellular activation, senescence, and apoptosis. They play an important role in intercellular communication. Their release may also maintain cellular integrity by ridding the cell of damaging substances. This review describes the biogenesis, uptake, and detection of extracellular vesicles in addition to the impact that they have on recipient cells, focusing on mechanisms important in the pathophysiology of kidney diseases, such as thrombosis, angiogenesis, tissue regeneration, immune modulation, and inflammation. In kidney diseases, extracellular vesicles may be utilized as biomarkers, as they are detected in both blood and urine. Furthermore, they may contribute to the pathophysiology of renal disease while also having beneficial effects associated with tissue repair. Because of their role in the promotion of thrombosis, inflammation, and immune-mediated disease, they could be the target of drug therapy, whereas their favorable effects could be utilized therapeutically in acute and chronic kidney injury.
Collapse
|
16
|
Shimizu M, Konishi A, Nomura S. Examination of biomarker expressions in sepsis-related DIC patients. Int J Gen Med 2018; 11:353-361. [PMID: 30254480 PMCID: PMC6140747 DOI: 10.2147/ijgm.s173684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Disseminated avascular coagulation (DIC) is the main cause of death among patients with sepsis. In particular, low platelet count is predictive of poor outcome. However, the significance of platelet activation in patients with sepsis-related DIC is poorly understood. To determine the characteristics of platelet-related abnormality in patients with sepsis-related DIC, we assessed the expression levels of several biomarkers. METHODS Plasma levels of biomarkers, including cytokines, chemokines, soluble selectins, platelet-derived microparticles (PDMPs), soluble vascular adhesion molecule 1, and high mobility group box protein 1 were measured by enzyme-linked immunosorbent assay at baseline and after 4, 7, 14, and 21 days of DIC treatment. RESULTS Differences in platelet activation and in the elevation of activated platelet-related PDMPs and of soluble P-selectin were seen between patients suffering from sepsis and hematologic malignancy with DIC. In addition, the elevation of interleukin (IL)-6 and thrombopoietin (TPO) was significant in sepsis patients with DIC. Furthermore, IL-6 and TPO promoted platelet activation in vitro. CONCLUSION Assessment of PDMPs, sP-selectin, IL-6, and TPO may be beneficial in the primary prevention of multi-organ failure in sepsis patients with DIC.
Collapse
Affiliation(s)
- Michiomi Shimizu
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan,
| | - Akiko Konishi
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan,
| | - Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan,
| |
Collapse
|
17
|
Schwertz H, Rondina MT. Platelets and their Microparticles go hand in hand. Thromb Res 2018; 168:164-165. [PMID: 30060877 DOI: 10.1016/j.thromres.2018.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Hansjörg Schwertz
- Program in Molecular Medicine in Salt Lake City, Utah, USA; Rocky Mountain Center for Occupational and Environmental Health in Salt Lake City, Utah, USA.
| | - Matthew T Rondina
- Program in Molecular Medicine in Salt Lake City, Utah, USA; The Department of Internal Medicine, in Salt Lake City, Utah, USA; University of Utah, Salt Lake City, Utah, USA, and the Department of Internal Medicine at the George E. Wahlen Salt Lake City VAMC in Salt Lake City, Utah, USA
| |
Collapse
|
18
|
Puskarich MA, Cornelius DC, Bandyopadhyay S, McCalmon M, Tramel R, Dale WD, Jones AE. Phosphatidylserine expressing platelet microparticle levels at hospital presentation are decreased in sepsis non-survivors and correlate with thrombocytopenia. Thromb Res 2018; 168:138-144. [PMID: 30064685 DOI: 10.1016/j.thromres.2018.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/08/2018] [Accepted: 06/21/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND Sepsis induced platelet activation releases platelet microparticles (PMPs). PMPs express phosphatidylserine (PS) and can serve as a scaffold for the prothrombinase complex, thereby promoting coagulation. Studies of PMPs in intensive care unit sepsis patients demonstrate mixed results, while the earliest changes and potential effects of clinical interventions remain understudied. We hypothesized PMPs would be associated with patient outcome and dysfunctional coagulation shortly after emergency department presentation with sepsis. METHODS Cohort study of patients from a single center enrolled in a previously published randomized control trial comparing two early resuscitation strategies. Adults presenting to the emergency department (ED) with suspected infection, ≥2 SIRS criteria, and either systolic blood pressure <90 mm Hg or lactate >4 mmol/L were eligible. Triple positive platelet microparticles (PMPs) expressing phosphatidylserine and integrin complexes alphaIIb (CD41) and beta3 (CD61) were quantitated using plasma from the time of enrollment. The primary outcome was in-hospital mortality. Secondary outcomes included platelet count, disseminated intravascular coagulation (DIC), and prothrombin time (PT). RESULTS 193 patients were enrolled and 184 had samples available. In-hospital mortality was 21%. 10 (5%) patients developed DIC. Median platelet count was 197 (IQR 135, 280) and PT was 13.2 (IQR 11.9, 16.8). Median triple positive PMP counts were 932 per μL (IQR 381, 1872). PMPs were significantly lower in non-survivors (575 vs 1128, p = 0.02) and non-significantly lower in DIC (387 vs 942, p = 0.17). PMPs demonstrated a positive linear association with platelet count (p < 0.001, R2 = 0.21). After adjusting for platelet count, PMPs were no longer significant predictors of mortality (p = 0.28). We observed no association between PMPs and PT. CONCLUSION Similar to patients enrolled later in the intensive care unit, PS-expressing PMPs are lower in emergency department sepsis non-survivors. These changes primarily reflect the degree of thrombocytopenia, and an independent prognostic role was not observed. Future studies should control for platelet count in assessment of PMP prognosis in sepsis.
Collapse
Affiliation(s)
- Michael A Puskarich
- Department of Emergency Medicine, Hennepin County Medical Center, 701 Park Ave, Minneapolis, MN 55415, United States of America.
| | - Denise C Cornelius
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Sibali Bandyopadhyay
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Maggie McCalmon
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Robert Tramel
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Wood D Dale
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Alan E Jones
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS, United States of America
| |
Collapse
|
19
|
Raeven P, Zipperle J, Drechsler S. Extracellular Vesicles as Markers and Mediators in Sepsis. Am J Cancer Res 2018; 8:3348-3365. [PMID: 29930734 PMCID: PMC6010985 DOI: 10.7150/thno.23453] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/14/2018] [Indexed: 01/28/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. It remains a highly lethal condition in which current tools for early diagnosis and therapeutic decision-making are far from ideal. Extracellular vesicles (EVs), 30 nm to several micrometers in size, are released from cells upon activation and apoptosis and express membrane epitopes specific for their parental cells. Since their discovery two decades ago, their role as biomarkers and mediators in various diseases has been intensively studied. However, their potential importance in the sepsis syndrome has gained attention only recently. Sepsis and EVs are both complex fields in which standardization has long been overdue. In this review, several topics are discussed. First, we review current studies on EVs in septic patients with emphasis on their variable quality and clinical utility. Second, we discuss the diagnostic and therapeutic potential of EVs as well as their role as facilitators of cell communication via micro RNA and the relevance of micro-organism-derived EVs. Third, we give an overview over the potential beneficial but also detrimental roles of EVs in sepsis. Finally, we focus on the role of EVs in selected intensive care scenarios such as coagulopathy, mechanical ventilation and blood transfusion. Overall, the prospect for EV use in septic patients is bright, ranging from rapid and precise (point-of-care) diagnostics, prevention of harmful iatrogenic interventions, to using EVs as guides of individualized therapy. Before the above is achieved, however, the EV research field requires reliable standardization of the current methods and development of new analytical procedures that can close the existing technological gaps.
Collapse
|
20
|
Li XH, Qian YB, Meng XX, Wang RL. Effect of Platelet-derived P-selectin on Neutrophil Recruitment in a Mouse Model of Sepsis-induced Acute Kidney Injury. Chin Med J (Engl) 2018; 130:1694-1699. [PMID: 28685720 PMCID: PMC5520557 DOI: 10.4103/0366-6999.209889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Acute kidney injury (AKI) is a severe disease in critically ill patients. Neutrophil infiltration into kidney was associated with the development of AKI, and P-selectin may be involved in the process of neutrophil recruitment in kidney. This study aimed to explore the potential effect of platelet-derived P-selectin on neutrophil recruitment in a mouse model of sepsis-induced AKI. Methods: A total of 30 C57BL/6 male mice were divided into five groups (n = 6 in each): sham group, sepsis group, anti-Ly6G group, anti-P-selectin group, and platelet depletion group. Sepsis was induced by cecal ligation and puncture. Serum creatinine concentration and platelet activity were measured by biochemical detector and flow cytometry, respectively. Histological and pathological features were analyzed using hematoxylin-eosin (H&E) and immunohistochemistry (IHC) staining, respectively. Myeloperoxidase (MPO) activity was detected with MPO assay. Unpaired t-test was used for data analysis. Results: Serum creatinine increased significantly in septic group compared to sham group (2.68 ± 0.27 mg/dl vs. 0.82 ± 0.19 mg/dl, t = 12.06, P = 0.0000) but attenuated in antibodies-treated animals compared to septic group (anti-Ly6G: 1.62 ± 0.30 mg/dl vs. 2.68 ± 0.27 mg/dl, t = 5.76, P = 0.0004; anti-P-selectin: 1.76 ± 0.31 mg/dl vs. 2.68 ± 0.27 mg/dl, t = 4.92, P = 0.0012; and platelet depletion: 1.93 ± 0.29 mg/dl vs. 2.68 ± 0.27 mg/dl, t = 4.14, P = 0.0032). Platelet amount significantly decreased compared to sham group (658.20 ± 60.64 × 109/L vs. 822.00 ± 48.60 × 109/L, t = 4.71, P = 0.0015) in septic mice, especially in platelet depletion group (240.80 ± 44.98 × 109/L vs. 822.00 ± 48.60 × 109/L, t = 19.63, P = 0.0000). P-selectin activity was significantly increased in septic group compared to sham group (16.54 ± 1.60% vs. 1.90 ± 0.29%, t = 15.64, P = 0.0000) but decreased significantly in platelet depletion group compared to septic group (3.62 ± 0.68% vs. 16.54 ± 1.60%, t = 12.89, P = 0.0002). IHC analysis shown that neutrophil infiltration increased in septic mice compared to sham group (36.67 ± 3.79% vs. 9.17 ± 1.61%, t = 11.58, P = 0.0003) and function-blocked groups (anti-Ly6G: 36.67 ± 3.79% vs. 15.33 ± 1.53%, t = 9.05, P = 0.0008; anti-P-selectin: 36.67 ± 3.79% vs. 21.33 ± 1.53%, t = 6.51, P = 0.0029; and platelet depletion: 36.67 ± 3.79% vs. 23.33 ± 3.06%, t = 4.75, P = 0.0090). MPO increased significantly in septic group compared to control (49.73 ± 1.83 ng/mg prot vs. 13.04 ± 2.16 ng/mg prot, t = 19.03, P = 0.0000) but decreased in function-blocked groups compared to septic group (anti-Ly6G: 26.52 ± 3.86 ng/mg prot vs. 49.73 ± 1.83 ng/mg prot, t = 9.59, P = 0.0000; anti-P-selectin: 33.06 ± 6.75 ng/mg prot vs. 49.73 ± 1.83 ng/mg prot, t = 4.85, P = 0.0013; and platelet depletion: 33.37 ± 2.25 ng/mg prot vs. 49.73 ± 1.83 ng/mg prot, t = 5.33, P = 0.0007). Conclusion: Platelets-derived P-selectin may be involved in the development of septic AKI through inducing neutrophil infiltration into kidney.
Collapse
Affiliation(s)
- Xiu-Hua Li
- Department of Critical Care Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai 201620; Emergency Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yong-Bing Qian
- Department of Critical Care Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai 201620, China
| | - Xiao-Xiao Meng
- Department of Critical Care Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai 201620, China
| | - Rui-Lan Wang
- Department of Critical Care Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai 201620, China
| |
Collapse
|
21
|
Li X, Li Y, Shen K, Li H, Bai J. The protective effect of ticagrelor on renal function in a mouse model of sepsis-induced acute kidney injury. Platelets 2018; 30:199-205. [PMID: 29370574 DOI: 10.1080/09537104.2017.1392499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Platelets are traditionally considered to be essential components of primary hemostasis. Recent investigations have revealed that platelets can be activated in patients with sepsis and are implicated in the development of sepsis and sepsis-induced-acute kidney injury (SAKI). In the present study, ticagrelor was used to induce a mouse model of SAKI by cecal ligation and puncture. It was found that ticagrelor could inhibit platelet activity, decrease the levels of interleukin-1β and serum creatinine, reduce infiltration of neutrophils in renal tissue, and attenuate cell apoptosis in the kidney. The results suggested that ticagrelor could protect renal function by inhibiting inflammation, recruitment of neutrophils into the kidney, and cell apoptosis in renal tissue. Thus, the findings might provide new strategies for preventing SAKI.
Collapse
Affiliation(s)
- Xiuhua Li
- a Emergency Center, Shanghai East Hospital , Tongji University School of Medicine , Shanghai , China.,b Intensive Care Unit , Shanghai University of Medicine& Health Sciences Affiliated Zhoupu Hospital , Shanghai , China
| | - Yusheng Li
- a Emergency Center, Shanghai East Hospital , Tongji University School of Medicine , Shanghai , China
| | - Kan Shen
- b Intensive Care Unit , Shanghai University of Medicine& Health Sciences Affiliated Zhoupu Hospital , Shanghai , China
| | - Hongqiang Li
- a Emergency Center, Shanghai East Hospital , Tongji University School of Medicine , Shanghai , China
| | - Jianwen Bai
- a Emergency Center, Shanghai East Hospital , Tongji University School of Medicine , Shanghai , China
| |
Collapse
|
22
|
Dewitte A, Lepreux S, Villeneuve J, Rigothier C, Combe C, Ouattara A, Ripoche J. Blood platelets and sepsis pathophysiology: A new therapeutic prospect in critically [corrected] ill patients? Ann Intensive Care 2017; 7:115. [PMID: 29192366 PMCID: PMC5709271 DOI: 10.1186/s13613-017-0337-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/12/2017] [Indexed: 02/06/2023] Open
Abstract
Beyond haemostasis, platelets have emerged as versatile effectors of the immune response. The contribution of platelets in inflammation, tissue integrity and defence against infections has considerably widened the spectrum of their role in health and disease. Here, we propose a narrative review that first describes these new platelet attributes. We then examine their relevance to microcirculatory alterations in multi-organ dysfunction, a major sepsis complication. Rapid progresses that are made on the knowledge of novel platelet functions should improve the understanding of thrombocytopenia, a common condition and a predictor of adverse outcome in sepsis, and may provide potential avenues for management and therapy.
Collapse
Affiliation(s)
- Antoine Dewitte
- INSERM U1026, BioTis, Univ. Bordeaux, 33000, Bordeaux, France. .,Department of Anaesthesia and Critical Care II, Magellan Medico-Surgical Center, CHU Bordeaux, 33000, Bordeaux, France.
| | - Sébastien Lepreux
- INSERM U1026, BioTis, Univ. Bordeaux, 33000, Bordeaux, France.,Department of Pathology, CHU Bordeaux, 33000, Bordeaux, France
| | - Julien Villeneuve
- Cell and Developmental Biology Department, Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, 08003, Barcelona, Spain
| | - Claire Rigothier
- INSERM U1026, BioTis, Univ. Bordeaux, 33000, Bordeaux, France.,Department of Nephrology, Transplantation and Haemodialysis, CHU Bordeaux, 33000, Bordeaux, France
| | - Christian Combe
- INSERM U1026, BioTis, Univ. Bordeaux, 33000, Bordeaux, France.,Department of Nephrology, Transplantation and Haemodialysis, CHU Bordeaux, 33000, Bordeaux, France
| | - Alexandre Ouattara
- Department of Anaesthesia and Critical Care II, Magellan Medico-Surgical Center, CHU Bordeaux, 33000, Bordeaux, France.,INSERM U1034, Biology of Cardiovascular Diseases, Univ. Bordeaux, 33600, Pessac, France
| | - Jean Ripoche
- INSERM U1026, BioTis, Univ. Bordeaux, 33000, Bordeaux, France
| |
Collapse
|
23
|
Microvesicle Involvement in Shiga Toxin-Associated Infection. Toxins (Basel) 2017; 9:toxins9110376. [PMID: 29156596 PMCID: PMC5705991 DOI: 10.3390/toxins9110376] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022] Open
Abstract
Shiga toxin is the main virulence factor of enterohemorrhagic Escherichia coli, a non-invasive pathogen that releases virulence factors in the intestine, causing hemorrhagic colitis and, in severe cases, hemolytic uremic syndrome (HUS). HUS manifests with acute renal failure, hemolytic anemia and thrombocytopenia. Shiga toxin induces endothelial cell damage leading to platelet deposition in thrombi within the microvasculature and the development of thrombotic microangiopathy, mostly affecting the kidney. Red blood cells are destroyed in the occlusive capillary lesions. This review focuses on the importance of microvesicles shed from blood cells and their participation in the prothrombotic lesion, in hemolysis and in the transfer of toxin from the circulation into the kidney. Shiga toxin binds to blood cells and may undergo endocytosis and be released within microvesicles. Microvesicles normally contribute to intracellular communication and remove unwanted components from cells. Many microvesicles are prothrombotic as they are tissue factor- and phosphatidylserine-positive. Shiga toxin induces complement-mediated hemolysis and the release of complement-coated red blood cell-derived microvesicles. Toxin was demonstrated within blood cell-derived microvesicles that transported it to renal cells, where microvesicles were taken up and released their contents. Microvesicles are thereby involved in all cardinal aspects of Shiga toxin-associated HUS, thrombosis, hemolysis and renal failure.
Collapse
|
24
|
Greco E, Lupia E, Bosco O, Vizio B, Montrucchio G. Platelets and Multi-Organ Failure in Sepsis. Int J Mol Sci 2017; 18:ijms18102200. [PMID: 29053592 PMCID: PMC5666881 DOI: 10.3390/ijms18102200] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022] Open
Abstract
Platelets have received increasing attention for their role in the pathophysiology of infectious disease, inflammation, and immunity. In sepsis, a low platelet count is a well-known biomarker for disease severity and more recently authors have focused their attention on the active role of platelets in the pathogenesis of multi-organ failure. Septic shock is characterised by a dysregulated inflammatory response, which can impair the microcirculation and lead to organ injury. Being at the crossroads between the immune system, clotting cascade, and endothelial cells, platelets seem to be an appealing central mediator and possible therapeutic target in sepsis. This review focuses on the pathogenic role of platelets in septic organ dysfunction in humans and animal models.
Collapse
Affiliation(s)
- Elisabetta Greco
- Department of Medical Science, University of Turin, 10126 Turin, Italy.
| | - Enrico Lupia
- Department of Medical Science, University of Turin, 10126 Turin, Italy.
| | - Ornella Bosco
- Department of Medical Science, University of Turin, 10126 Turin, Italy.
| | - Barbara Vizio
- Department of Medical Science, University of Turin, 10126 Turin, Italy.
| | | |
Collapse
|
25
|
Abstract
Extracellular vesicles, such as exosomes and microvesicles, are host cell-derived packages of information that allow cell-cell communication and enable cells to rid themselves of unwanted substances. The release and uptake of extracellular vesicles has important physiological functions and may also contribute to the development and propagation of inflammatory, vascular, malignant, infectious and neurodegenerative diseases. This Review describes the different types of extracellular vesicles, how they are detected and the mechanisms by which they communicate with cells and transfer information. We also describe their physiological functions in cellular interactions, such as in thrombosis, immune modulation, cell proliferation, tissue regeneration and matrix modulation, with an emphasis on renal processes. We discuss how the detection of extracellular vesicles could be utilized as biomarkers of renal disease and how they might contribute to disease processes in the kidney, such as in acute kidney injury, chronic kidney disease, renal transplantation, thrombotic microangiopathies, vasculitides, IgA nephropathy, nephrotic syndrome, urinary tract infection, cystic kidney disease and tubulopathies. Finally, we consider how the release or uptake of extracellular vesicles can be blocked, as well as the associated benefits and risks, and how extracellular vesicles might be used to treat renal diseases by delivering therapeutics to specific cells.
Collapse
Affiliation(s)
- Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Klinikgatan 28, 22184 Lund, Sweden
| | - Anne-Lie Ståhl
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Klinikgatan 28, 22184 Lund, Sweden
| | - Ida Arvidsson
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Klinikgatan 28, 22184 Lund, Sweden
| |
Collapse
|
26
|
Lee J, Wen B, Carter EA, Combes V, Grau GER, Lay PA. Infrared spectroscopic characterization of monocytic microvesicles (microparticles) released upon lipopolysaccharide stimulation. FASEB J 2017; 31:2817-2827. [PMID: 28314769 DOI: 10.1096/fj.201601272r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 02/26/2017] [Indexed: 12/28/2022]
Abstract
Microvesicles (MVs) are involved in cell-cell interactions, including disease pathogenesis. Nondestructive Fourier-transform infrared (FTIR) spectra from MVs were assessed as a technique to provide new biochemical insights into a LPS-induced monocyte model of septic shock. FTIR spectroscopy provided a quick method to investigate relative differences in biomolecular content of different MV populations that was complementary to traditional semiquantitative omics approaches, with which it is difficult to provide information on relative changes between classes (proteins, lipids, nucleic acids, carbohydrates) or protein conformations. Time-dependent changes were detected in biomolecular contents of MVs and in the monocytes from which they were released. Differences in phosphatidylcholine and phosphatidylserine contents were observed in MVs released under stimulation, and higher relative concentrations of RNA and α-helical structured proteins were present in stimulated MVs compared with MVs from resting cells. FTIR spectra of stimulated monocytes displayed changes that were consistent with those observed in the corresponding MVs they released. LPS-stimulated monocytes had reduced concentrations of nucleic acids, α-helical structured proteins, and phosphatidylcholine compared with resting monocytes but had an increase in total lipids. FTIR spectra of MV biomolecular content will be important in shedding new light on the mechanisms of MVs and the different roles they play in physiology and disease pathogenesis.-Lee, J., Wen, B., Carter, E. A., Combes, V., Grau, G. E. R., Lay, P. A. Infrared spectroscopic characterization of monocytic microvesicles (microparticles) released upon lipopolysaccharide stimulation.
Collapse
Affiliation(s)
- Joonsup Lee
- School of Chemistry and Vibrational Spectroscopy Core Facility, The University of Sydney, Sydney, New South Wales, Australia
| | - Beryl Wen
- Vascular Immunopathology Unit, Bosch Institute-School of Medical Sciences, and
| | - Elizabeth A Carter
- School of Chemistry and Vibrational Spectroscopy Core Facility, The University of Sydney, Sydney, New South Wales, Australia
| | - Valery Combes
- Vascular Immunopathology Unit, Bosch Institute-School of Medical Sciences, and.,Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Georges E R Grau
- Vascular Immunopathology Unit, Bosch Institute-School of Medical Sciences, and.,Australian Institute of Nanoscale Science and Technology (AINST), The University of Sydney, Sydney, New South Wales, Australia
| | - Peter A Lay
- School of Chemistry and Vibrational Spectroscopy Core Facility, The University of Sydney, Sydney, New South Wales, Australia; .,Australian Institute of Nanoscale Science and Technology (AINST), The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
27
|
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is an independent predictor of increased mortality and morbidity. It is essential that further advances in the treatment of sepsis should prioritize targeted therapies in SA-AKI in order to improve these bleak outcomes. As yet, a unique therapy that effectively reduces the impact of acute kidney injury has not been demonstrated. However, the emergence of novel targeted therapies, perhaps in combination, has the possibility of significantly reducing the long-term sequelae of an episode of SA-AKI. In this review, we will focus on the shared etiology of these conditions and how this is managed with targeted therapy and finally the emerging novel therapies that may play an additional role to current treatment strategies.
Collapse
Affiliation(s)
- James F Doyle
- Department of Intensive Care, Medicine and Surrey Peri-Operative Anaesthesia and Critical Care Collaborative Research Group, Royal Surrey County Hospital NHS Foundation Trust
| | - Lui G Forni
- Department of Intensive Care, Medicine and Surrey Peri-Operative Anaesthesia and Critical Care Collaborative Research Group, Royal Surrey County Hospital NHS Foundation Trust
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
28
|
Pomara C, Riezzo I, Bello S, De Carlo D, Neri M, Turillazzi E. A Pathophysiological Insight into Sepsis and Its Correlation with Postmortem Diagnosis. Mediators Inflamm 2016; 2016:4062829. [PMID: 27239102 PMCID: PMC4863102 DOI: 10.1155/2016/4062829] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/21/2016] [Accepted: 04/10/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sepsis is among the leading causes of death worldwide and is the focus of a great deal of attention from policymakers and caregivers. However, sepsis poses significant challenges from a clinical point of view regarding its early detection and the best organization of sepsis care. Furthermore, we do not yet have reliable tools for measuring the incidence of sepsis. Methods based on analyses of insurance claims are unreliable, and postmortem diagnosis is still challenging since autopsy findings are often nonspecific. AIM The objective of this review is to assess the state of our knowledge of the molecular and biohumoral mechanisms of sepsis and to correlate them with our postmortem diagnosis ability. CONCLUSION The diagnosis of sepsis-related deaths is an illustrative example of the reciprocal value of autopsy both for clinicians and for pathologists. A complete methodological approach, integrating clinical data by means of autopsy and histological and laboratory findings aiming to identify and demonstrate the host response to infectious insults, is mandatory to illuminate the exact cause of death. This would help clinicians to compare pre- and postmortem findings and to reliably measure the incidence of sepsis.
Collapse
Affiliation(s)
- C. Pomara
- Department of Clinical and Experimental Medicine, Section of Forensic Pathology, Ospedale Colonnello D'Avanzo, University of Foggia, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - I. Riezzo
- Department of Clinical and Experimental Medicine, Section of Forensic Pathology, Ospedale Colonnello D'Avanzo, University of Foggia, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - S. Bello
- Department of Clinical and Experimental Medicine, Section of Forensic Pathology, Ospedale Colonnello D'Avanzo, University of Foggia, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - D. De Carlo
- Department of Clinical and Experimental Medicine, Section of Forensic Pathology, Ospedale Colonnello D'Avanzo, University of Foggia, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - M. Neri
- Department of Clinical and Experimental Medicine, Section of Forensic Pathology, Ospedale Colonnello D'Avanzo, University of Foggia, Viale degli Aviatori 1, 71100 Foggia, Italy
| | - E. Turillazzi
- Department of Clinical and Experimental Medicine, Section of Forensic Pathology, Ospedale Colonnello D'Avanzo, University of Foggia, Viale degli Aviatori 1, 71100 Foggia, Italy
| |
Collapse
|
29
|
Mederle K, Meurer M, Castrop H, Höcherl K. Inhibition of COX-1 attenuates the formation of thromboxane A2 and ameliorates the acute decrease in glomerular filtration rate in endotoxemic mice. Am J Physiol Renal Physiol 2015; 309:F332-40. [DOI: 10.1152/ajprenal.00567.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 05/11/2015] [Indexed: 11/22/2022] Open
Abstract
Thromboxane (Tx) A2 has been suggested to be involved in the development of sepsis-induced acute kidney injury (AKI). Therefore, we investigated the impact of cyclooxygenase (COX)-1 and COX-2 activity on lipopolysaccharide (LPS)-induced renal TxA2 formation, and on endotoxemia-induced AKI in mice. Injection of LPS (3 mg/kg ip) decreased glomerular filtration rate (GFR) and the amount of thrombocytes to ∼50% of basal values after 4 h. Plasma and renocortical tissue levels of TxB2 were increased ∼10- and 1.7-fold in response to LPS, respectively. The COX-1 inhibitor SC-560 attenuated the LPS-induced fall in GFR and in platelet count to ∼75% of basal levels. Furthermore, SC-560 abolished the increase in plasma and renocortical tissue levels of TxB2 in response to LPS. The COX-2 inhibitor SC-236 further enhanced the LPS-induced decrease in GFR to ∼40% of basal values. SC-236 did not alter thrombocyte levels nor the LPS-induced increase in plasma and renocortical tissue levels of TxB2. Pretreatment with clopidogrel inhibited the LPS-induced drop in thrombocyte count, but did not attenuate the LPS-induced decrease in GFR and the increase in plasma TxB2 levels. This study demonstrates that endotoxemia-induced TxA2 formation depends on the activity of COX-1. Our study further indicates that the COX-1 inhibitor SC-560 has a protective effect on the decrease in renal function in response to endotoxin. Therefore, our data support a role for TxA2 in the development of AKI in response to LPS.
Collapse
Affiliation(s)
- Katharina Mederle
- Institute of Physiology, University of Regensburg, Regensburg, Germany; and
| | - Manuel Meurer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hayo Castrop
- Institute of Physiology, University of Regensburg, Regensburg, Germany; and
| | - Klaus Höcherl
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
30
|
Erdbrügger U, Le TH. Extracellular Vesicles in Renal Diseases: More than Novel Biomarkers? J Am Soc Nephrol 2015; 27:12-26. [PMID: 26251351 DOI: 10.1681/asn.2015010074] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles from the urine and circulation have gained significant interest as potential diagnostic biomarkers in renal diseases. Urinary extracellular vesicles contain proteins from all sections of the nephron, whereas most studied circulating extracellular vesicles are derived from platelets, immune cells, and the endothelium. In addition to their diagnostic role as markers of kidney and vascular damage, extracellular vesicles may have functional significance in renal health and disease by facilitating communication between cells and protecting against kidney injury and bacterial infection in the urinary tract. However, the current understanding of extracellular vesicles has derived mostly from studies with very small numbers of patients or in vitro data. Moreover, accurate assessment of these vesicles remains a challenge, in part because of a lack of consensus in the methodologies to measure extracellular vesicles and the inability of most techniques to capture the entire size range of these vesicles. However, newer techniques and standardized protocols to improve the detection of extracellular vesicles are in development. A clearer understanding of the composition and biology of extracellular vesicles will provide insights into their pathophysiologic, diagnostic, and therapeutic roles.
Collapse
Affiliation(s)
- Uta Erdbrügger
- Department of Medicine, Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia
| | - Thu H Le
- Department of Medicine, Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
31
|
Mooberry MJ, Key NS. Microparticle analysis in disorders of hemostasis and thrombosis. Cytometry A 2015; 89:111-22. [PMID: 25704723 DOI: 10.1002/cyto.a.22647] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/29/2015] [Accepted: 02/03/2015] [Indexed: 01/18/2023]
Abstract
Microparticles (MPs) are submicron vesicles released from the plasma membrane of eukaryotic cells in response to activation or apoptosis. MPs are known to be involved in numerous biologic processes, including inflammation, the immune response, cancer metastasis, and angiogenesis. Their earliest recognized and most widely accepted role, however, is the ability to promote and support the process of blood coagulation. Consequently, there is ongoing interest in studying MPs in disorders of hemostasis and thrombosis. Both phosphatidylserine (PS) exposure and the presence of tissue factor (TF) in the MP membrane may account for their procoagulant properties, and elevated numbers of MPs in plasma have been reported in numerous prothrombotic conditions. To date, however, there are few data on true causality linking MPs to the genesis of thrombosis. A variety of methodologies have been employed to characterize and quantify MPs, although detection is challenging due to their submicron size. Flow cytometry (FCM) remains the most frequently utilized strategy for MP detection; however, it is associated with significant technological limitations. Additionally, preanalytical and analytical variables can influence the detection of MPs by FCM, rendering data interpretation difficult. Lack of methodologic standardization in MP analysis by FCM confounds the issue further, although efforts are currently underway to address this limitation. Moving forward, it will be important to address these technical challenges as a scientific community if we are to better understand the role that MPs play in disorders of hemostasis and thrombosis.
Collapse
Affiliation(s)
- Micah J Mooberry
- Department of Medicine, Division of Hematology/Oncology, University of North Carolina at Chapel Hill, North Carolina
| | - Nigel S Key
- Department of Medicine, Division of Hematology/Oncology, University of North Carolina at Chapel Hill, North Carolina
| |
Collapse
|
32
|
de Stoppelaar SF, van 't Veer C, van der Poll T. The role of platelets in sepsis. Thromb Haemost 2014; 112:666-77. [PMID: 24966015 DOI: 10.1160/th14-02-0126] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/16/2014] [Indexed: 01/01/2023]
Abstract
Platelets are small circulating anucleate cells that are of crucial importance in haemostasis. Over the last decade, it has become increasingly clear that platelets play an important role in inflammation and can influence both innate and adaptive immunity. Sepsis is a potentially lethal condition caused by detrimental host response to an invading pathogen. Dysbalanced immune response and activation of the coagulation system during sepsis are fundamental events leading to sepsis complications and organ failure. Platelets, being major effector cells in both haemostasis and inflammation, are involved in sepsis pathogenesis and contribute to sepsis complications. Platelets catalyse the development of hyperinflammation, disseminated intravascular coagulation and microthrombosis, and subsequently contribute to multiple organ failure. Inappropriate accumulation and activity of platelets are key events in the development of sepsis-related complications such as acute lung injury and acute kidney injury. Platelet activation readouts could serve as biomarkers for early sepsis recognition; inhibition of platelets in septic patients seems like an important target for immune-modulating therapy and appears promising based on animal models and retrospective human studies.
Collapse
Affiliation(s)
- Sacha F de Stoppelaar
- Sacha F. de Stoppelaar, MD, Academic Medical Centre, Centre of Experimental and Molecular Medicine, Meibergdreef 9, Room G2-130, 1105 AZ Amsterdam, the Netherlands, Tel.: +31 20 5665910, Fax: +31 20 6977192, E-mail:
| | | | | |
Collapse
|
33
|
Kim H, Hur M, Cruz DN, Moon HW, Yun YM. Plasma neutrophil gelatinase-associated lipocalin as a biomarker for acute kidney injury in critically ill patients with suspected sepsis. Clin Biochem 2013; 46:1414-8. [PMID: 23747960 DOI: 10.1016/j.clinbiochem.2013.05.069] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 01/20/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the diagnostic utility of plasma neutrophil gelatinase-associated lipocalin (NGAL) as an early objective biomarker to predict acute kidney injury (AKI) in critically ill patients with suspected sepsis, for whom procalcitonin (PCT) was used for the diagnosis and staging of sepsis. DESIGN AND METHODS Plasma NGAL was measured using the Triage NGAL Test (Alere, Inc., San Diego, CA, USA) in 231 samples obtained from patients with suspected sepsis. The results of NGAL were compared with those of Elecsys BRAHMS PCT (Roche Diagnostics, Basel, Switzerland). Renal failure was assessed using the renal subscore of Sepsis-related Organ Failure Assessment (SOFA) score. AKI was defined according to the Acute Kidney Injury Network criteria. RESULTS The concentrations of plasma NGAL were significantly different according to the five groups of PCT concentration (P<0.0001) and the renal subscore of SOFA score (P<0.0001). Plasma NGAL was significantly increased in the patients with AKI compared with those without AKI (416.5 ng/mL vs. 181.0 ng/mL, P=0.0223). CONCLUSION Plasma NGAL seems to be a highly sensitive and objective predictor of AKI in patients with sepsis. Plasma NGAL can be added for the diagnosis and staging of renal failure in sepsis.
Collapse
Affiliation(s)
- Hanah Kim
- Department of Laboratory Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|