1
|
Cajander S, Kox M, Scicluna BP, Weigand MA, Mora RA, Flohé SB, Martin-Loeches I, Lachmann G, Girardis M, Garcia-Salido A, Brunkhorst FM, Bauer M, Torres A, Cossarizza A, Monneret G, Cavaillon JM, Shankar-Hari M, Giamarellos-Bourboulis EJ, Winkler MS, Skirecki T, Osuchowski M, Rubio I, Bermejo-Martin JF, Schefold JC, Venet F. Profiling the dysregulated immune response in sepsis: overcoming challenges to achieve the goal of precision medicine. THE LANCET. RESPIRATORY MEDICINE 2024; 12:305-322. [PMID: 38142698 DOI: 10.1016/s2213-2600(23)00330-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 12/26/2023]
Abstract
Sepsis is characterised by a dysregulated host immune response to infection. Despite recognition of its significance, immune status monitoring is not implemented in clinical practice due in part to the current absence of direct therapeutic implications. Technological advances in immunological profiling could enhance our understanding of immune dysregulation and facilitate integration into clinical practice. In this Review, we provide an overview of the current state of immune profiling in sepsis, including its use, current challenges, and opportunities for progress. We highlight the important role of immunological biomarkers in facilitating predictive enrichment in current and future treatment scenarios. We propose that multiple immune and non-immune-related parameters, including clinical and microbiological data, be integrated into diagnostic and predictive combitypes, with the aid of machine learning and artificial intelligence techniques. These combitypes could form the basis of workable algorithms to guide clinical decisions that make precision medicine in sepsis a reality and improve patient outcomes.
Collapse
Affiliation(s)
- Sara Cajander
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Matthijs Kox
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Brendon P Scicluna
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei hospital, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Raquel Almansa Mora
- Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| | - Stefanie B Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ignacio Martin-Loeches
- St James's Hospital, Dublin, Ireland; Hospital Clinic, Institut D'Investigacions Biomediques August Pi i Sunyer, Universidad de Barcelona, Barcelona, Spain
| | - Gunnar Lachmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, Berlin, Germany
| | - Massimo Girardis
- Department of Intensive Care and Anesthesiology, University Hospital of Modena, Modena, Italy
| | - Alberto Garcia-Salido
- Hospital Infantil Universitario Niño Jesús, Pediatric Critical Care Unit, Madrid, Spain
| | - Frank M Brunkhorst
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Antoni Torres
- Pulmonology Department. Hospital Clinic of Barcelona, University of Barcelona, Ciberes, IDIBAPS, ICREA, Barcelona, Spain
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Guillaume Monneret
- Immunology Laboratory, Hôpital E Herriot - Hospices Civils de Lyon, Lyon, France; Université Claude Bernard Lyon-1, Hôpital E Herriot, Lyon, France
| | | | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | | | - Martin Sebastian Winkler
- Department of Anesthesiology and Intensive Care, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marcin Osuchowski
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Jesus F Bermejo-Martin
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain; School of Medicine, Universidad de Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabienne Venet
- Immunology Laboratory, Hôpital E Herriot - Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Ecole Normale Supeérieure de Lyon, Universiteé Claude Bernard-Lyon 1, Lyon, France.
| |
Collapse
|
2
|
Liu X, Chen L, Peng W, Deng H, Ni H, Tong H, Hu H, Wang S, Qian J, Liang A, Chen K. Th17/Treg balance: the bloom and wane in the pathophysiology of sepsis. Front Immunol 2024; 15:1356869. [PMID: 38558800 PMCID: PMC10978743 DOI: 10.3389/fimmu.2024.1356869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Sepsis is a multi-organ dysfunction characterized by an unregulated host response to infection. It is associated with high morbidity, rapid disease progression, and high mortality. Current therapies mainly focus on symptomatic treatment, such as blood volume supplementation and antibiotic use, but their effectiveness is limited. Th17/Treg balance, based on its inflammatory property, plays a crucial role in determining the direction of the inflammatory response and the regression of organ damage in sepsis patients. This review provides a summary of the changes in T-helper (Th) 17 cell and regulatory T (Treg) cell differentiation and function during sepsis, the heterogeneity of Th17/Treg balance in the inflammatory response, and the relationship between Th17/Treg balance and organ damage. Th17/Treg balance exerts significant control over the bloom and wanes in host inflammatory response throughout sepsis.
Collapse
Affiliation(s)
- Xinyong Liu
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Longwang Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Peng
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Hongsheng Deng
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Hongying Ni
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Hongjie Tong
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Hangbo Hu
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Shengchao Wang
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jin Qian
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Andong Liang
- Nursing Faculty, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Kun Chen
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
3
|
Chen T, Liu Y, Tang Y, Xu Y, Kuang P, Cai L. Use of cardiac troponin I, lactic acid, procalcitonin, and serum complement C3 as prognostic indicators in patients with sepsis. Medicine (Baltimore) 2023; 102:e36724. [PMID: 38206695 PMCID: PMC10754579 DOI: 10.1097/md.0000000000036724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024] Open
Abstract
Sepsis is a heterogeneous syndrome caused by the immune response to severe infection. This study aimed to investigate the value of cardiac troponin I, lactic acid, procalcitonin, and serum complement C3 levels for predicting death in patients with sepsis. Patients with sepsis who were hospitalized in the Department of Critical Care Medicine at our hospital between June 2017 and October 2022 were included in this retrospective study and divided into a survival group and a death group according to their survival status after 28 days. The Acute Physiology and Chronic Health Evaluation II (APACHE II) and Sequential Organ Failure Assessment (SOFA) scores, and levels of cardiac troponin I, lactic acid, procalcitonin, and serum complement C3 were measured. A total of 516 patients were included in the analysis. Multivariable analysis showed that the APACHE II score (P < .001), SOFA score (P < .001), and cardiac troponin I (P < .001), lactic acid (P = .002), procalcitonin (P < .001), and serum complement C3 (P = .01) levels were independent predictors of sepsis death. The area under the receiver operating characteristic curve (AUC) was 0.882 (95% CI: 0.794-0.941) in patients with sepsis predicted using a combination of cardiac troponin I, lactic acid, procalcitonin, and serum complement C3 levels, which was better than the predictive value of cardiac troponin I (AUC: 0.734, 95% CI: 0.628-0.824), lactic acid (AUC: 0.686, 95% CI: 0.576-0.781), procalcitonin (AUC: 0.727, 95% CI: 0.620-0.817), or serum complement C3 (AUC: 0.684, 95% CI: 0.575-0.780) alone. Cardiac troponin I, lactic acid, and procalcitonin levels are independent predictors of death, whereas serum complement C3 protects against death in patients with sepsis. The combination of cardiac troponin I, lactic acid, procalcitonin, and serum complement C3 levels has a better predictive value for death than any single measure alone in patients with sepsis.
Collapse
Affiliation(s)
- Tao Chen
- Department of Critical Medicine, Yichun People’s Hospital, Yichun, China
| | - Yijun Liu
- Department of Critical Medicine, Yichun People’s Hospital, Yichun, China
| | - Yi Tang
- Department of Critical Medicine, Yichun People’s Hospital, Yichun, China
| | - Ye Xu
- Department of Clinical Laboratory, Yichun People’s Hospital, Yichun, China
| | - Pengcheng Kuang
- Department of Critical Medicine, Yichun People’s Hospital, Yichun, China
| | - Long Cai
- Department of Critical Medicine, Yichun People’s Hospital, Yichun, China
| |
Collapse
|
4
|
Vázquez AC, Arriaga-Pizano L, Ferat-Osorio E. Cellular Markers of Immunosuppression in Sepsis. Arch Med Res 2021; 52:828-835. [PMID: 34702587 DOI: 10.1016/j.arcmed.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Sepsis is a pathological condition frequently caused by invasion of a pathogen and the subsequent unregulated response that threatens the patient's life through diverse organ failure. The incidence of sepsis is increasing, and there is no specific therapy. Despite technological contributions to treat sepsis or increased knowledge of its molecular pathophysiology, mortality remains high, and sepsis is a global health problem. Knowledge of the role of the cells involved in the host response through the synthesis of inflammatory mediators and their different effects on cells, tissues or systems is key to the development of medical treatments that regulate systems involved in such responses to pathogens. This review addresses new insights into the role of cells, their mediators, and the interaction between them that lead to the development of a state of immunosuppression.
Collapse
Affiliation(s)
- Arturo Cérbulo Vázquez
- Servicio de Medicina Genómica, Hospital General de México, Dr Eduardo Liceaga, Ciudad de México, México
| | - Lourdes Arriaga-Pizano
- Unidad de Investigación Médica en Inmunoquímica de la Unidad de Investigación en Epidemiología Clínica, Hospital de Especialidades, Dr. Bernardo Sepúlveda Gutiérrez, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Eduardo Ferat-Osorio
- División de Investigación en Salud, Unidad de Investigación en Epidemiología Clínica, Hospital de Especialidades, Dr. Bernardo Sepúlveda Gutiérrez, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México.
| |
Collapse
|
5
|
Li H, Chen J, Hu Y, Cai X, Tang D, Zhang P. Serum C1q Levels Have Prognostic Value for Sepsis and are Related to the Severity of Sepsis and Organ Damage. J Inflamm Res 2021; 14:4589-4600. [PMID: 34531674 PMCID: PMC8439974 DOI: 10.2147/jir.s322391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022] Open
Abstract
Objective To explore the clinical application value of serum complement component C1q levels in sepsis. Methods The clinical data and laboratory examination data of 320 research subjects (including 132 cases as sepsis group, 93 cases as nonsepsis group and 95 cases as control group) who were diagnosed and treated in Renmin Hospital of Wuhan University from July 2020 to March 2021 were collected. We compared the levels of each index among the three groups and further analyzed the C1q levels of different severity subgroups and different outcome subgroups of sepsis. Afterwards, we explored the correlation between C1q levels and SOFA score, organ damage indexes and coagulation indexes. Finally, the receiver operating characteristic curve (ROC) was used to analyze the prognostic value of C1q in patients with sepsis. Results C1q levels were significantly reduced in the serum of patients with sepsis; the level of C1q in the death group was lower than that in the survival group (127.1 mg/L vs 153.2 mg/L, P < 0.05), and the mortality in the C1q decreased group was higher when compared with C1q normal group; in addition, serum C1q levels were correlated with SOFA score, organ damage indexes and coagulation indexes; C1q had a high area under the curve (AUC) for the prognosis of sepsis, and the combination of other indexes can further improve the prognostic value. Conclusion Serum C1q levels have potential clinical value for the condition and prognosis of sepsis.
Collapse
Affiliation(s)
- Huan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Juanjuan Chen
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Yuanhui Hu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Xin Cai
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Dongling Tang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Pingan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| |
Collapse
|
6
|
More than a Pore: Nonlytic Antimicrobial Functions of Complement and Bacterial Strategies for Evasion. Microbiol Mol Biol Rev 2021; 85:85/1/e00177-20. [PMID: 33504655 DOI: 10.1128/mmbr.00177-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The complement system is an evolutionarily ancient defense mechanism against foreign substances. Consisting of three proteolytic activation pathways, complement converges on a common effector cascade terminating in the formation of a lytic pore on the target surface. The classical and lectin pathways are initiated by pattern recognition molecules binding to specific ligands, while the alternative pathway is constitutively active at low levels in circulation. Complement-mediated killing is essential for defense against many Gram-negative bacterial pathogens, and genetic deficiencies in complement can render individuals highly susceptible to infection, for example, invasive meningococcal disease. In contrast, Gram-positive bacteria are inherently resistant to the direct bactericidal activity of complement due to their thick layer of cell wall peptidoglycan. However, complement also serves diverse roles in immune defense against all bacteria by flagging them for opsonization and killing by professional phagocytes, synergizing with neutrophils, modulating inflammatory responses, regulating T cell development, and cross talk with coagulation cascades. In this review, we discuss newly appreciated roles for complement beyond direct membrane lysis, incorporate nonlytic roles of complement into immunological paradigms of host-pathogen interactions, and identify bacterial strategies for complement evasion.
Collapse
|
7
|
Khan MA, Shamma T. Complement factor and T-cell interactions during alloimmune inflammation in transplantation. J Leukoc Biol 2018; 105:681-694. [PMID: 30536904 DOI: 10.1002/jlb.5ru0718-288r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/25/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
Complement factor and T-cell signaling during an effective alloimmune response plays a key role in transplant-associated injury, which leads to the progression of chronic rejection (CR). During an alloimmune response, activated complement factors (C3a and C5a) bind to their corresponding receptors (C3aR and C5aR) on a number of lymphocytes, including T-regulatory cells (Tregs), and these cell-molecular interactions have been vital to modulate an effective immune response to/from Th1-effector cell and Treg activities, which result in massive inflammation, microvascular impairments, and fibrotic remodeling. Involvement of the complement-mediated cell signaling during transplantation signifies a crucial role of complement components as a key therapeutic switch to regulate ongoing inflammatory state, and further to avoid the progression of CR of the transplanted organ. This review highlights the role of complement-T cell interactions, and how these interactions shunt the effector immune response during alloimmune inflammation in transplantation, which could be a novel therapeutic tool to protect a transplanted organ and avoid progression of CR.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Research Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Talal Shamma
- Organ Transplant Research Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Prognostic Significance of Preoperative and Postoperative Complement C3 Depletion in Gastric Cancer: A Three-Year Survival Investigation. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2161840. [PMID: 29062836 PMCID: PMC5618749 DOI: 10.1155/2017/2161840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/07/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The role of complement system in predicting prognosis of gastric cancer (GC) remains obscured. This study aims to explore the incidence of complement C3 depletion and associated outcomes in GC patients. METHODS between August 2013 and December 2013, 106 patients with gastric adenocarcinoma were prospectively analyzed. Plasma levels of complement C3 and C4 were detected at baseline, one day before surgery, and postoperative day 3, respectively. Patients with low C3 levels (<0.75 mg/mL) were considered as having complement depletion (CD), while others with normal C3 levels were included as control. The 3-year overall survival (OS), disease-free survival (DFS), and other outcomes were compared between both groups, with the CD incidence explored meanwhile. RESULTS The CD incidence was 28.3% before surgery but increased to 37.7% after surgery. Preoperative CD was related to prolonged hospital stay (22.7 versus 19.2 day, P = 0.032) and increased postoperative complications (33.3% versus 14.5%, P = 0.030) and hospital costs (P = 0.013). Besides, postoperative C3 depletion was significantly associated with decreased 3-year OS (P = 0.022) and DFS (P = 0.003). Moreover, postoperative C3 depletion and advanced tumor stage were independent predictive factors of poor prognosis. CONCLUSIONS Complement C3 depletion occurring in gastric cancer was associated with poor short-term and long-term outcomes.
Collapse
|
9
|
Danikowski KM, Jayaraman S, Prabhakar BS. Regulatory T cells in multiple sclerosis and myasthenia gravis. J Neuroinflammation 2017; 14:117. [PMID: 28599652 PMCID: PMC5466736 DOI: 10.1186/s12974-017-0892-8] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/29/2017] [Indexed: 01/09/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic debilitating disease of the central nervous system primarily mediated by T lymphocytes with specificity to neuronal antigens in genetically susceptible individuals. On the other hand, myasthenia gravis (MG) primarily involves destruction of the neuromuscular junction by antibodies specific to the acetylcholine receptor. Both autoimmune diseases are thought to result from loss of self-tolerance, which allows for the development and function of autoreactive lymphocytes. Although the mechanisms underlying compromised self-tolerance in these and other autoimmune diseases have not been fully elucidated, one possibility is numerical, functional, and/or migratory deficits in T regulatory cells (Tregs). Tregs are thought to play a critical role in the maintenance of peripheral immune tolerance. It is believed that Tregs function by suppressing the effector CD4+ T cell subsets that mediate autoimmune responses. Dysregulation of suppressive and migratory markers on Tregs have been linked to the pathogenesis of both MS and MG. For example, genetic abnormalities have been found in Treg suppressive markers CTLA-4 and CD25, while others have shown a decreased expression of FoxP3 and IL-10. Furthermore, elevated levels of pro-inflammatory cytokines such as IL-6, IL-17, and IFN-γ secreted by T effectors have been noted in MS and MG patients. This review provides several strategies of treatment which have been shown to be effective or are proposed as potential therapies to restore the function of various Treg subsets including Tr1, iTr35, nTregs, and iTregs. Strategies focusing on enhancing the Treg function find importance in cytokines TGF-β, IDO, interleukins 10, 27, and 35, and ligands Jagged-1 and OX40L. Likewise, strategies which affect Treg migration involve chemokines CCL17 and CXCL11. In pre-clinical animal models of experimental autoimmune encephalomyelitis (EAE) and experimental autoimmune myasthenia gravis (EAMG), several strategies have been shown to ameliorate the disease and thus appear promising for treating patients with MS or MG.
Collapse
Affiliation(s)
- K M Danikowski
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - S Jayaraman
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - B S Prabhakar
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
10
|
Ingels C, Vanhorebeek I, Derese I, Jensen L, Wouters PJ, Thiel S, Van den Berghe G. The pattern recognition molecule collectin-L1 in critically ill children. Pediatr Res 2016; 80:237-43. [PMID: 27057739 DOI: 10.1038/pr.2016.76] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/04/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Critically ill children are prone to nosocomial infections, which may lead to adverse outcome. Low serum concentrations upon admission to the pediatric intensive care unit (PICU) of the mannan-binding lectin (MBL)-associated serine protease (MASP)-3 protein of the lectin pathway of complement activation have been associated with risk of infection and prolonged need for intensive care. We hypothesized that also a low upon-admission concentration of collectin-L1 (CL-L1), a novel member of this pathway, is independently associated with these adverse outcomes. METHODS We quantified the serum concentrations of CL-L1 in 81 healthy children and in 700 critically ill children upon PICU admission. RESULTS CL-L1 concentrations were significantly lower in the critically ill children as compared with the healthy children. However, corrected for baseline characteristics, risk factors and several lectin pathway proteins, a higher CL-L1 concentration upon PICU admission was independently associated with an increased risk of acquiring a new infection and with a prolonged time to PICU discharge. In contrast, a low MASP-3 concentration remained independently associated with these adverse outcomes. CONCLUSION A high serum CL-L1 concentration in critically ill children upon PICU admission is associated with an increased risk of infection and prolonged need of intensive care, and counteracts the protective effect of having a high MASP-3 concentration.
Collapse
Affiliation(s)
- Catherine Ingels
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Ilse Vanhorebeek
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Inge Derese
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Lisbeth Jensen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Pieter J Wouters
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, Leuven, Belgium
| |
Collapse
|
11
|
Morad HOJ, Belete SC, Read T, Shaw AM. Time-course analysis of C3a and C5a quantifies the coupling between the upper and terminal Complement pathways in vitro. J Immunol Methods 2015; 427:13-8. [PMID: 26391915 DOI: 10.1016/j.jim.2015.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 12/12/2022]
Abstract
An in vitro zymosan-activation of the Complement system, through the lectin and alternative pathways, was performed in pooled human serum over a 24h time-course. Activation was quantitatively monitored by measuring the concentration of the upper Complement pathway fragment, C3a and the terminal pathway fragment, C5a. Upper Complement showed a maximum activation of 39% and the time-to-maximum activation reduced 8-fold, as a highly non-linear function of the zymosan dose. The C3a:C5a molar ratio rose to a maximum of 1100:1, before terminal pathway activation was initiated; indicating a flux threshold. This threshold appears to be exceeded once more than 31% of C3 molecules are activated. Above this threshold, significant activation of terminal pathway was observed; reducing the molar ratio to 17:1. The C5a/C3a molar ratio was used to determine the terminal pathway activation relative to total Complement activation and ranged from 0.1-0.8%. This depicts upper Complement activation to be 49-fold larger than terminal activation, a figure consistent with the observed density of the membrane attack complex in the membrane of cells. Our results thus indicate that the relative activity of opsonisation is ~50-fold greater than membrane attack complex formation, in vitro, in the pooled serum phenotype. The results suggest a potential clinical application, where an in vitro analysis of a patient on admission, or prior to a surgical procedure, would indicate their upper Complement activation capacity, with activation of C3 measured thereafter, or post-operatively. A patient with an exhausted upper Complement capacity may be vulnerable to infections and complications, such as sepsis.
Collapse
Affiliation(s)
- Hassan O J Morad
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Samuel C Belete
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Thomas Read
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Andrew M Shaw
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
12
|
Activated Complement Factors as Disease Markers for Sepsis. DISEASE MARKERS 2015; 2015:382463. [PMID: 26420913 PMCID: PMC4572436 DOI: 10.1155/2015/382463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/16/2015] [Indexed: 02/06/2023]
Abstract
Sepsis is a leading cause of death in the United States and worldwide. Early recognition and effective management are essential for improved outcome. However, early recognition is impeded by lack of clinically utilized biomarkers. Complement factors play important roles in the mechanisms leading to sepsis and can potentially serve as early markers of sepsis and of sepsis severity and outcome. This review provides a synopsis of recent animal and clinical studies of the role of complement factors in sepsis development, together with their potential as disease markers. In addition, new results from our laboratory are presented regarding the involvement of the complement factor, mannose-binding lectin, in septic shock patients. Future clinical studies are needed to obtain the complete profiles of complement factors/their activated products during the course of sepsis development. We anticipate that the results of these studies will lead to a multipanel set of sepsis biomarkers which, along with currently used laboratory tests, will facilitate earlier diagnosis, timely treatment, and improved outcome.
Collapse
|
13
|
Stover CM, McDonald J, Byrne S, Lambert DG, Thompson JP. Properdin levels in human sepsis. Front Immunol 2015; 6:24. [PMID: 25699043 PMCID: PMC4313716 DOI: 10.3389/fimmu.2015.00024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/12/2015] [Indexed: 12/12/2022] Open
Abstract
Properdin is a normal serum protein that increases the production of complement activation products by binding C3b integral to convertase complexes and amplifying their activity at the site of activation. Thereby, it not only can aid in the resolution of infection but also contribute to tissue damage. In human sepsis, circulating complement C3 concentrations are decreased, though C3 is described as a positive acute phase reactant. However, properdin levels in human sepsis have not been reported. In this study, serum from 81 critically ill patients (predominately abdominal and respiratory sepsis) were analyzed for properdin levels at defined points of their stay in the intensive care unit (ICU) and compared with 61 age and sex-matched healthy volunteers. Properdin concentrations were significantly decreased in patients with sepsis on admission to ICU, but increased after clinical recovery to exceed levels observed in healthy volunteers. Properdin concentrations at ICU admission were decreased in non-survivors of sepsis compared to survivors, but this did not correlate with APACHE II score. However, pathologically low properdin levels (<7 μg/ml) were related to increased duration of treatment.
Collapse
Affiliation(s)
- Cordula M Stover
- Department of Infection, Immunity and Inflammation, College of Medicine, Biological Sciences and Psychology, University of Leicester , Leicester , UK
| | - John McDonald
- Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester , Leicester , UK
| | - Simon Byrne
- Department of Infection, Immunity and Inflammation, College of Medicine, Biological Sciences and Psychology, University of Leicester , Leicester , UK
| | - David G Lambert
- Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester , Leicester , UK
| | - Jonathan P Thompson
- Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester , Leicester , UK
| |
Collapse
|
14
|
Cabrera-Perez J, Condotta SA, Badovinac VP, Griffith TS. Impact of sepsis on CD4 T cell immunity. J Leukoc Biol 2014; 96:767-77. [PMID: 24791959 PMCID: PMC4197564 DOI: 10.1189/jlb.5mr0114-067r] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/08/2014] [Accepted: 03/19/2014] [Indexed: 12/13/2022] Open
Abstract
Sepsis remains the primary cause of death from infection in hospital patients, despite improvements in antibiotics and intensive-care practices. Patients who survive severe sepsis can display suppressed immune function, often manifested as an increased susceptibility to (and mortality from) nosocomial infections. Not only is there a significant reduction in the number of various immune cell populations during sepsis, but there is also decreased function in the remaining lymphocytes. Within the immune system, CD4 T cells are important players in the proper development of numerous cellular and humoral immune responses. Despite sufficient clinical evidence of CD4 T cell loss in septic patients of all ages, the impact of sepsis on CD4 T cell responses is not well understood. Recent findings suggest that CD4 T cell impairment is a multipronged problem that results from initial sepsis-induced cell loss. However, the subsequent lymphopenia-induced numerical recovery of the CD4 T cell compartment leads to intrinsic alterations in phenotype and effector function, reduced repertoire diversity, changes in the composition of naive antigen-specific CD4 T cell pools, and changes in the representation of different CD4 T cell subpopulations (e.g., increases in Treg frequency). This review focuses on sepsis-induced alterations within the CD4 T cell compartment that influence the ability of the immune system to control secondary heterologous infections. The understanding of how sepsis affects CD4 T cells through their numerical loss and recovery, as well as function, is important in the development of future treatments designed to restore CD4 T cells to their presepsis state.
Collapse
Affiliation(s)
- Javier Cabrera-Perez
- Microbiology, Immunology, and Cancer Biology Graduate Program Medical Scientist Training Program
| | | | - Vladimir P Badovinac
- Department of Pathology and Interdisciplinary Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology Graduate Program Center for Immunology, and Department of Urology, University of Minnesota Medical School, Minneapolis, Minnesota, USA; Minneapolis Veterans Administration Health Care System, Minneapolis, Minnesota, USA; and
| |
Collapse
|
15
|
Clarke EV, Tenner AJ. Complement modulation of T cell immune responses during homeostasis and disease. J Leukoc Biol 2014; 96:745-56. [PMID: 25210145 DOI: 10.1189/jlb.3mr0214-109r] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The complement system is an ancient and critical effector mechanism of the innate immune system as it senses, kills, and clears infectious and/or dangerous particles and alerts the immune system to the presence of the infection and/or danger. Interestingly, an increasing number of reports have demonstrated a clear role for complement in the adaptive immune system as well. Of note, a number of recent studies have identified previously unknown roles for complement proteins, receptors, and regulators in T cell function. Here, we will review recent data demonstrating the influence of complement proteins C1q, C3b/iC3b, C3a (and C3aR), and C5a (and C5aR) and complement regulators DAF (CD55) and CD46 (MCP) on T cell function during homeostasis and disease. Although new concepts are beginning to emerge in the field of complement regulation of T cell function, future experiments should focus on whether complement is interacting directly with the T cell or is having an indirect effect on T cell function via APCs, the cytokine milieu, or downstream complement activation products. Importantly, the identification of the pivotal molecular pathways in the human systems will be beneficial in the translation of concepts derived from model systems to therapeutic targeting for treatment of human disorders.
Collapse
Affiliation(s)
- Elizabeth V Clarke
- Department of Molecular Biology and Biochemistry and Institute for Immunology, University of California, Irvine, California, USA
| | - Andrea J Tenner
- Department of Molecular Biology and Biochemistry and Institute for Immunology, University of California, Irvine, California, USA
| |
Collapse
|