1
|
Lobo SM, Junior JMDS, Malbouisson LM. Improving perioperative care in low-resource settings with goal-directed therapy: a narrative review. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2024; 74:744460. [PMID: 37648078 DOI: 10.1016/j.bjane.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Perioperative Goal-Directed Therapy (PGDT) has significantly showed to decrease complications and risk of death in high-risk patients according to numerous meta-analyses. The main goal of PGDT is to individualize the therapy with fluids, inotropes, and vasopressors, during and after surgery, according to patients' needs in order to prevent organic dysfunction development. In this opinion paper we aimed to focus a discussion on possible alternatives to invasive hemodynamic monitoring in low resource settings.
Collapse
Affiliation(s)
- Suzana Margareth Lobo
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil.
| | - João Manoel da Silva Junior
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Luiz Marcelo Malbouisson
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| |
Collapse
|
2
|
Yang TX, Tan AY, Leung WH, Chong D, Chow YF. Restricted Versus Liberal Versus Goal-Directed Fluid Therapy for Non-vascular Abdominal Surgery: A Network Meta-Analysis and Systematic Review. Cureus 2023; 15:e38238. [PMID: 37261162 PMCID: PMC10226838 DOI: 10.7759/cureus.38238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
Optimal perioperative fluid management is crucial, with over- or under-replacement associated with complications. There are many strategies for fluid therapy, including liberal fluid therapy (LFT), restrictive fluid therapy (RFT) and goal-directed fluid therapy (GDT), without a clear consensus as to which is better. We aimed to find out which is the more effective fluid therapy option in adult surgical patients undergoing non-vascular abdominal surgery in the perioperative period. This study is a systematic review and network meta-analysis (NMA) with node-splitting analysis of inconsistency, sensitivity analysis and meta-regression. We conducted a literature search of Pubmed, Cochrane Library, EMBASE, Google Scholar and Web of Science. Only studies comparing restrictive, liberal and goal-directed fluid therapy during the perioperative phase in major non-cardiac surgery in adult patients will be included. Trials on paediatric patients, obstetric patients and cardiac surgery were excluded. Trials that focused on goal-directed therapy monitoring with pulmonary artery catheters and venous oxygen saturation (SvO2), as well as those examining purely biochemical and laboratory end points, were excluded. A total of 102 randomised controlled trials (RCTs) and 78 studies (12,100 patients) were included. NMA concluded that goal-directed fluid therapy utilising FloTrac was the most effective intervention in reducing the length of stay (LOS) (surface under cumulative ranking curve (SUCRA) = 91%, odds ratio (OR) = -2.4, 95% credible intervals (CrI) = -3.9 to -0.85) and wound complications (SUCRA = 86%, OR = 0.41, 95% CrI = 0.24 to 0.69). Goal-directed fluid therapy utilising pulse pressure variation was the most effective in reducing the complication rate (SUCRA = 80%, OR = 0.25, 95% CrI = 0.047 to 1.2), renal complications (SUCRA = 93%, OR = 0.23, 95% CrI = 0.045 to 1.0), respiratory complications (SUCRA = 74%, OR = 0.42, 95% CrI = 0.053 to 3.6) and cardiac complications (SUCRA = 97%, OR = 0.067, 95% CrI = 0.0058 to 0.57). Liberal fluid therapy was the most effective in reducing the mortality rate (SUCRA = 81%, OR = 0.40, 95% CrI = 0.12 to 1.5). Goal-directed therapy utilising oesophageal Doppler was the most effective in reducing anastomotic leak (SUCRA = 79%, OR = 0.45, 95% CrI = 0.12 to 1.5). There was no publication bias, but moderate to substantial heterogeneity was found in all networks. In preventing different complications, except mortality, goal-directed fluid therapy was consistently more highly ranked and effective than standard (SFT), liberal or restricted fluid therapy. The evidence grade was low quality to very low quality for all the results, except those for wound complications and anastomotic leak.
Collapse
Affiliation(s)
- Timothy Xianyi Yang
- Department of Anaesthesiology and Operating Theatre Services, Queen Elizabeth Hospital, Hong Kong, HKG
| | - Adrian Y Tan
- Department of Anaesthesiology and Operating Theatre Services, Queen Elizabeth Hospital, Hong Kong, HKG
| | - Wesley H Leung
- Department of Anaesthesiology and Operating Theatre Services, Queen Elizabeth Hospital, Hong Kong, HKG
| | - David Chong
- Department of Anaesthesiology and Operating Theatre Services, Queen Elizabeth Hospital, Hong Kong, HKG
| | - Yu Fat Chow
- Department of Anaesthesiology and Operating Theatre Services, Queen Elizabeth Hospital, Hong Kong, HKG
| |
Collapse
|
3
|
Virág M, Rottler M, Gede N, Ocskay K, Leiner T, Tuba M, Ábrahám S, Farkas N, Hegyi P, Molnár Z. Goal-Directed Fluid Therapy Enhances Gastrointestinal Recovery after Laparoscopic Surgery: A Systematic Review and Meta-Analysis. J Pers Med 2022; 12:734. [PMID: 35629156 PMCID: PMC9143059 DOI: 10.3390/jpm12050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
(1) Background: Whether goal-directed fluid therapy (GDFT) provides any outcome benefit as compared to non-goal-directed fluid therapy (N-GDFT) in elective abdominal laparoscopic surgery has not been determined yet. (2) Methods: A systematic literature search was conducted in MEDLINE, Embase, CENTRAL, Web of Science, and Scopus. The main outcomes were length of hospital stay (LOHS), time to first flatus and stool, intraoperative fluid and vasopressor requirements, serum lactate levels, and urinary output. Pooled risks ratios (RRs) with 95% confidence intervals (CI) were calculated for dichotomous outcomes and weighted mean difference (WMD) with 95% CI for continuous outcomes. (3) Results: Eleven studies were included in the quantitative, and fifteen in the qualitative synthesis. LOHS (WMD: -1.18 days, 95% CI: -1.84 to -0.53) and time to first stool (WMD: -9.8 h; CI -12.7 to -7.0) were significantly shorter in the GDFT group. GDFT resulted in significantly less intraoperative fluid administration (WMD: -441 mL, 95% CI: -790 to -92) and lower lactate levels at the end of the operation: WMD: -0.25 mmol L-1; 95% CI: -0.36 to -0.14. (4) Conclusions: GDFT resulted in enhanced recovery of the gastrointestinal function and shorter LOHS as compared to N-GDFT.
Collapse
Affiliation(s)
- Marcell Virág
- Szentágothai Research Centre, Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (M.V.); (M.R.); (N.G.); (K.O.); (T.L.); (M.T.); (S.Á.); (N.F.); (P.H.)
- Department of Anesthesiology and Intensive Therapy, Szent György University Teaching Hospital of Fejér County, 8000 Székesfehérvár, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Máté Rottler
- Szentágothai Research Centre, Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (M.V.); (M.R.); (N.G.); (K.O.); (T.L.); (M.T.); (S.Á.); (N.F.); (P.H.)
- Department of Anesthesiology and Intensive Therapy, Szent György University Teaching Hospital of Fejér County, 8000 Székesfehérvár, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Noémi Gede
- Szentágothai Research Centre, Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (M.V.); (M.R.); (N.G.); (K.O.); (T.L.); (M.T.); (S.Á.); (N.F.); (P.H.)
| | - Klementina Ocskay
- Szentágothai Research Centre, Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (M.V.); (M.R.); (N.G.); (K.O.); (T.L.); (M.T.); (S.Á.); (N.F.); (P.H.)
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Tamás Leiner
- Szentágothai Research Centre, Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (M.V.); (M.R.); (N.G.); (K.O.); (T.L.); (M.T.); (S.Á.); (N.F.); (P.H.)
- Anaesthetic Department, Hinchingbrooke Hospital, North West Anglia NHS Foundation Trust, Huntingdon PE29 6NT, UK
| | - Máté Tuba
- Szentágothai Research Centre, Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (M.V.); (M.R.); (N.G.); (K.O.); (T.L.); (M.T.); (S.Á.); (N.F.); (P.H.)
| | - Szabolcs Ábrahám
- Szentágothai Research Centre, Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (M.V.); (M.R.); (N.G.); (K.O.); (T.L.); (M.T.); (S.Á.); (N.F.); (P.H.)
| | - Nelli Farkas
- Szentágothai Research Centre, Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (M.V.); (M.R.); (N.G.); (K.O.); (T.L.); (M.T.); (S.Á.); (N.F.); (P.H.)
| | - Péter Hegyi
- Szentágothai Research Centre, Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (M.V.); (M.R.); (N.G.); (K.O.); (T.L.); (M.T.); (S.Á.); (N.F.); (P.H.)
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- Division for Pancreatic Disorders, Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Zsolt Molnár
- Szentágothai Research Centre, Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (M.V.); (M.R.); (N.G.); (K.O.); (T.L.); (M.T.); (S.Á.); (N.F.); (P.H.)
- Doctoral School of Clinical Medicine, University of Szeged, 6720 Szeged, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- Department of Anaesthesiology and Intensive Therapy, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Department of Anaesthesiology and Intensive Therapy, Semmelweis University, 1082 Budapest, Hungary
| |
Collapse
|
4
|
Heterogeneous impact of hypotension on organ perfusion and outcomes: a narrative review. Br J Anaesth 2021; 127:845-861. [PMID: 34392972 DOI: 10.1016/j.bja.2021.06.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/08/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022] Open
Abstract
Arterial blood pressure is the driving force for organ perfusion. Although hypotension is common in acute care, there is a lack of accepted criteria for its definition. Most practitioners regard hypotension as undesirable even in situations that pose no immediate threat to life, but hypotension does not always lead to unfavourable outcomes based on experience and evidence. Thus efforts are needed to better understand the causes, consequences, and treatments of hypotension. This narrative review focuses on the heterogeneous underlying pathophysiological bases of hypotension and their impact on organ perfusion and patient outcomes. We propose the iso-pressure curve with hypotension and hypertension zones as a way to visualize changes in blood pressure. We also propose a haemodynamic pyramid and a pressure-output-resistance triangle to facilitate understanding of why hypotension can have different pathophysiological mechanisms and end-organ effects. We emphasise that hypotension does not always lead to organ hypoperfusion; to the contrary, hypotension may preserve or even increase organ perfusion depending on the relative changes in perfusion pressure and regional vascular resistance and the status of blood pressure autoregulation. Evidence from RCTs does not support the notion that a higher arterial blood pressure target always leads to improved outcomes. Management of blood pressure is not about maintaining a prespecified value, but rather involves ensuring organ perfusion without undue stress on the cardiovascular system.
Collapse
|