1
|
Gimenes I, Spoladore J, Paranhos BA, Romasco T, Di Pietro N, Piattelli A, Mourão CF, Gomes Alves G. Assessment of Pyrogenic Response of Medical Devices and Biomaterials by the Monocyte Activation Test (MAT): A Systematic Review. Int J Mol Sci 2024; 25:7844. [PMID: 39063086 PMCID: PMC11276646 DOI: 10.3390/ijms25147844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Pyrogens are fever-inducing substances routinely investigated in health products through tests such as the Rabbit Pyrogen Test (RPT), the Limulus Amebocyte Lysate (LAL), and the Monocyte Activation Test (MAT). However, the applications of the MAT for medical devices and biomaterials remain limited. This work aimed to overview the studies evaluating the pyrogenicity of medical devices and biomaterials using the MAT, highlighting its successes and potential challenges. An electronic search was performed by December 2023 in PubMed, Scopus, and Web of Science, identifying 321 records which resulted in ten selected studies. Data were extracted detailing the tested materials, MAT variants, interferences, and comparisons between methods. Methodological quality was assessed using the ToxRTool, and the results were synthesized descriptively. The selected studies investigated various materials, including polymers, metals, and natural compounds, employing the different biological matrices of the MAT. Results showed the MAT's versatility, with successful detection of pyrogens in most materials tested, though variability in sensitivity was noted based on the material and testing conditions. Challenges remain in optimizing protocols for different material properties, such as determining the best methods for direct contact versus eluate testing and addressing the incubation conditions. In conclusion, the MAT demonstrates significant potential as a pyrogen detection method for medical devices and biomaterials. However, continued research is essential to address existing gaps, optimize protocols, and validate the test across a broader range of materials.
Collapse
Affiliation(s)
- Izabela Gimenes
- Post-Graduation Program in Science and Biotechnology, Fluminense Federal University, Niteroi 24220-900, Brazil; (I.G.); (J.S.)
| | - Janaína Spoladore
- Post-Graduation Program in Science and Biotechnology, Fluminense Federal University, Niteroi 24220-900, Brazil; (I.G.); (J.S.)
| | - Bruno Andrade Paranhos
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-170, Brazil;
| | - Tea Romasco
- Division of Dental Research Administration, Tufts University School of Dental Medicine, Boston, MA 02111, USA;
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International, University of Health and Medical Sciences, 00131 Rome, Italy;
| | - Carlos Fernando Mourão
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Gutemberg Gomes Alves
- Cell and Molecular Biology Department, Institute of Biology, Fluminense Federal University, Niteroi 24220-900, Brazil;
| |
Collapse
|
2
|
Babaei M, Ebrahim-Najafabadi N, Mirzadeh M, Abdali H, Farnaghi M, Gharavi MK, Kheradmandfard M, Kharazi AZ, Poursamar SA. A comprehensive bench-to-bed look into the application of gamma-sterilized 3D-printed polycaprolactone/hydroxyapatite implants for craniomaxillofacial defects, an in vitro, in vivo, and clinical study. BIOMATERIALS ADVANCES 2024; 161:213900. [PMID: 38772132 DOI: 10.1016/j.bioadv.2024.213900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
This study investigates the safety and efficacy of 3D-printed polycaprolactone/hydroxyapatite (PCL/HA) scaffolds for patient-specific cranioplasty surgeries, employing liquid deposition modeling (LDM) technology. This research is pioneering as it explores the impact of gamma radiation on PCL/HA scaffolds and utilizes printing ink with the highest content of HA known in the composite. The mechanical, morphological, and macromolecular stability of the gamma-sterilized scaffolds were verified before implantation. Subsequent research involving animal subjects was conducted to explore the effects of sterilized implants. Eventually, three clinical cases were selected for the implantation studies as part of a phase 1 non-randomized open-label clinical trial. It was shown that a 25 kGy gamma-ray dose for sterilizing the printed implants did not alter the required geometrical precision of the printed implants. The implants exhibited well-distributed HA and strength comparable to cancellous bone. Gamma radiation reduced hydrophobicity and water uptake capacity without inducing pyrogenic or inflammatory responses. Personalized PCL/HA substitutes successfully treated various craniomaxillofacial defects, including trauma-induced facial asymmetry and congenital deformities. HA nanoparticles in the ink stimulated significant osteoconductive responses within three months of implantation. Moreover, the results revealed that while larger implants may exhibit a slower bone formation response in comparison to smaller implants, they generally had an acceptable rate and volume of bone formation. This clinical trial suggests the application of a sterilized PCL/HA composite for craniomaxillofacial surgery is safe and could be considered as a substitute for autologous bone.
Collapse
Affiliation(s)
- Melika Babaei
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Ebrahim-Najafabadi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Motahareh Mirzadeh
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Abdali
- Craniofacial and Cleft Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammadhasan Farnaghi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Kalbasi Gharavi
- Craniofacial and Cleft Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Kheradmandfard
- Dental Materials Research Centre, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anousheh Zargar Kharazi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Ali Poursamar
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Craniofacial and Cleft Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Fennrich S, Hennig U, Toliashvili L, Schlensak C, Wendel HP, Stoppelkamp S. More than 70 Years of Pyrogen Detection: Current State and Future Perspectives. Altern Lab Anim 2016; 44:239-53. [DOI: 10.1177/026119291604400305] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the quality assurance of medical products, tests for sterility are essential. For parenteral pharmaceuticals, avoiding the presence of pyrogens is crucial. These fever-inducing substances (endotoxins and non-endotoxins) are not eliminated by standard sterilisation processes, and are biologically active once in the bloodstream, causing risks to human health, ranging from mild reactions (e.g. fever) to septic shock and death. Therefore, for injectable formulations, pyrogen testing is mandatory. Over the years, various pyrogen testing methods have been introduced, namely: in the 1940s, the rabbit pyrogen test, which is an in vivo test that measures the fever reaction as an endpoint; in the 1970s, the Limulus Amoebocyte Lysate (LAL) test, which is an in vitro test (with the haemolymph of the horseshoe crab) that specifically detects endotoxin; and in 2010, the Monocyte-Activation Test (MAT), which is a non-animal based in vitro pyrogen test that represents a full replacement of the rabbit test. Due to the ubiquity and biological significance of pyrogens, we are currently further developing the MAT so that it can be used for other applications. More specifically, our focus is on the detection of pyrogenic contamination on medical devices, as well as on the measurement of air quality. In addition, further improvements to permit the use of cryopreserved blood in the MAT, to overcome the limitations in the availability of freshly-drawn blood from human donors, are ongoing.
Collapse
Affiliation(s)
- Stefan Fennrich
- Clinical Research Laboratory, Clinic of Thoracic, Cardiac and Vascular Surgery, University Hospital Tübingen, Germany
| | - Ulrike Hennig
- Clinical Research Laboratory, Clinic of Thoracic, Cardiac and Vascular Surgery, University Hospital Tübingen, Germany
| | - Leila Toliashvili
- Clinical Research Laboratory, Clinic of Thoracic, Cardiac and Vascular Surgery, University Hospital Tübingen, Germany
| | - Christian Schlensak
- Clinical Research Laboratory, Clinic of Thoracic, Cardiac and Vascular Surgery, University Hospital Tübingen, Germany
| | - Hans Peter Wendel
- Clinical Research Laboratory, Clinic of Thoracic, Cardiac and Vascular Surgery, University Hospital Tübingen, Germany
| | - Sandra Stoppelkamp
- Clinical Research Laboratory, Clinic of Thoracic, Cardiac and Vascular Surgery, University Hospital Tübingen, Germany
| |
Collapse
|
4
|
Stang K, Fennrich S, Krajewski S, Stoppelkamp S, Burgener IA, Wendel HP, Post M. Highly sensitive pyrogen detection on medical devices by the monocyte activation test. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1065-1075. [PMID: 24414113 DOI: 10.1007/s10856-013-5136-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/23/2013] [Indexed: 06/03/2023]
Abstract
Pyrogens are components of microorganisms, like bacteria, viruses or fungi, which can induce a complex inflammatory response in the human body. Pyrogen contamination on medical devices prior operation is still critical and associated with severe complications for the patients. The aim of our study was to develop a reliable test, which allows detection of pyrogen contamination on the surface of medical devices. After in vitro pyrogen contamination of different medical devices and incubation in a rotation model, the human whole blood monocyte activation test (MAT), which is based on an IL-1β-specific ELISA, was employed. Our results show that when combining a modified MAT protocol and a dynamic incubation system, even smallest amounts of pyrogens can be directly detected on the surface of medical devices. Therefore, screening of medical devices prior clinical application using our novel assay, has the potential to significantly reduce complications associated with pyrogen-contaminated medical devices.
Collapse
Affiliation(s)
- Katharina Stang
- Clinical Research Laboratory, Department of Thoracic, Cardiac and Vascular Surgery, University Hospital Tuebingen, Tuebingen University, Calwerstr. 7/1, 72076, Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
MA L, HE YJ, LI Y, GONG MX. Actions of four organic acids in radix isatidis on endotoxin-neutralization investigated by kinetic turbidimetric assay. J TRADIT CHIN MED 2012; 32:261-6. [DOI: 10.1016/s0254-6272(13)60022-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Ma R, Weng L, Bao X, Song S, Zhang Y. In vivobiocompatibility and bioactivity ofin situsynthesized hydroxyapatite/polyetheretherketone composite materials. J Appl Polym Sci 2012. [DOI: 10.1002/app.37926] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Mohanan P, Banerjee S, Geetha C. Detection of pyrogenicity on medical grade polymer materials using rabbit pyrogen, LAL and ELISA method. J Pharm Biomed Anal 2011; 55:1170-4. [DOI: 10.1016/j.jpba.2011.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/28/2011] [Accepted: 04/04/2011] [Indexed: 11/30/2022]
|