1
|
Xiao B, Qie Y, Jin Y, Yu N, Sun N, Liu W, Wang X, Wang J, Qian Z, Zhao Y, Yuan T, Li L, Wang F, Liu C, Ma P. Genetic basis of an elite wheat cultivar Guinong 29 with harmonious improvement between multiple diseases resistance and other comprehensive traits. Sci Rep 2024; 14:14336. [PMID: 38906938 PMCID: PMC11192888 DOI: 10.1038/s41598-024-64998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
Fungal diseases, such as powdery mildew and rusts, significantly affect the quality and yield of wheat. Pyramiding diverse types of resistance genes into cultivars represents the preferred strategy to combat these diseases. Moreover, achieving collaborative improvement between diseases resistance, abiotic stress, quality, and agronomic and yield traits is difficult in genetic breeding. In this study, the wheat cultivar, Guinong 29 (GN29), showed high resistance to powdery mildew and stripe rust at both seedling and adult plant stages, and was susceptible to leaf rust at the seedling stage but slow resistance at the adult-plant stage. Meanwhile, it has elite agronomic and yield traits, indicating promising coordination ability among multiple diseases resistance and other key breeding traits. To determine the genetic basis of these elite traits, GN29 was tested with 113 molecular markers for 98 genes associated with diseases resistance, stress tolerance, quality, and adaptability. The results indicated that two powdery mildew resistance (Pm) genes, Pm2 and Pm21, confirmed the outstanding resistance to powdery mildew through genetic analysis, marker detection, genomic in situ hybridization (GISH), non-denaturing fluorescence in situ hybridization (ND-FISH), and homology-based cloning; the stripe rust resistance (Yr) gene Yr26 and leaf rust resistance (Lr) genes Lr1 and Lr46 conferred the stripe rust and slow leaf rust resistance in GN29, respectively. Meanwhile, GN29 carries dwarfing genes Rht-B1b and Rht-D1a, vernalization genes vrn-A1, vrn-B1, vrn-D1, and vrn-B3, which were consistent with the phenotypic traits in dwarf characteristic and semi-winter property; carries genes Dreb1 and Ta-CRT for stress tolerance to drought, salinity, low temperature, and abscisic acid (ABA), suggesting that GN29 may also have elite stress-tolerance ability; and carries two low-molecular-weight glutenin subunit genes Glu-B3b and Glu-B3bef which contributed to high baking quality. This study not only elucidated the genetic basis of the elite traits in GN29 but also verified the capability for harmonious improvement in both multiple diseases resistance and other comprehensive traits, offering valuable information for breeding breakthrough-resistant cultivars.
Collapse
Affiliation(s)
- Bei Xiao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Yanmin Qie
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Key Laboratory of Crop Genetic and Breeding, Shijiazhuang, 050035, China
| | - Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ningning Yu
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Nina Sun
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Wei Liu
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Xiaolu Wang
- Crop Research Institute, Shandong Academy of Agriculture Sciences, Jinan, 250100, China
| | - Jiaojiao Wang
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Zejun Qian
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ya Zhao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Tangyu Yuan
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Linzhi Li
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Fengtao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agriculture Sciences, Jinan, 250100, China.
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China.
| |
Collapse
|
2
|
Cha JK, Park H, Kwon Y, Lee SM, Jang SG, Kwon SW, Lee JH. Synergizing breeding strategies via combining speed breeding, phenotypic selection, and marker-assisted backcrossing for the introgression of Glu-B1i in wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1402709. [PMID: 38863547 PMCID: PMC11165042 DOI: 10.3389/fpls.2024.1402709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
Wheat is a major food crop that plays a crucial role in the human diet. Various breeding technologies have been developed and refined to meet the increasing global wheat demand. Several studies have suggested breeding strategies that combine generation acceleration systems and molecular breeding methods to maximize breeding efficiency. However, real-world examples demonstrating the effective utilization of these strategies in breeding programs are lacking. In this study, we designed and demonstrated a synergized breeding strategy (SBS) that combines rapid and efficient breeding techniques, including speed breeding, speed vernalization, phenotypic selection, backcrossing, and marker-assisted selection. These breeding techniques were tailored to the specific characteristics of the breeding materials and objectives. Using the SBS approach, from artificial crossing to the initial observed yield trial under field conditions only took 3.5 years, resulting in a 53% reduction in the time required to develop a BC2 near-isogenic line (NIL) and achieving a higher recurrent genome recovery of 91.5% compared to traditional field conditions. We developed a new wheat NIL derived from cv. Jokyoung, a leading cultivar in Korea. Milyang56 exhibited improved protein content, sodium dodecyl sulfate-sedimentation value, and loaf volume compared to Jokyoung, which were attributed to introgression of the Glu-B1i allele from the donor parent, cv. Garnet. SBS represents a flexible breeding model that can be applied by breeders for developing breeding materials and mapping populations, as well as analyzing the environmental effects of specific genes or loci and for trait stacking.
Collapse
Affiliation(s)
- Jin-Kyung Cha
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Hyeonjin Park
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Youngho Kwon
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - So-Myeong Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Seong-Gyu Jang
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Soon-Wook Kwon
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Jong-Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| |
Collapse
|
3
|
Lee MH, Kim KM, Kang CS, Yoon M, Jang KC, Choi C. Development of PCR-based markers for identification of wheat HMW glutenin Glu-1Bx and Glu-1By alleles. BMC PLANT BIOLOGY 2024; 24:395. [PMID: 38745139 PMCID: PMC11092038 DOI: 10.1186/s12870-024-05100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND In common wheat (Triticum aestivum L.), allelic variations in the high-molecular-weight glutenin subunits Glu-B1 locus have important effects on grain end-use quality. The Glu-B1 locus consists of two tightly linked genes encoding x- and y-type subunits that exhibit highly variable frequencies. However, studies on the discriminating markers of the alleles that have been reported are limited. Here, we developed 11 agarose gel-based PCR markers for detecting Glu-1Bx and Glu-1By alleles. RESULTS By integrating the newly developed markers with previously published PCR markers, nine Glu-1Bx locus alleles (Glu-1Bx6, Glu-1Bx7, Glu-1Bx7*, Glu-1Bx7 OE, Glu-1Bx13, Glu-1Bx14 (-) , Glu-1Bx14 (+)/Bx20, and Glu-1Bx17) and seven Glu-1By locus alleles (Glu-1By8, Glu-1By8*, Glu-1By9, Glu-1By15/By20, Glu-1By16, and Glu-1By18) were distinguished in 25 wheat cultivars. Glu-1Bx6, Glu-1Bx13, Glu-1Bx14 (+)/Bx20, Glu-1By16, and Glu-1By18 were distinguished using the newly developed PCR markers. Additionally, the Glu-1Bx13 and Glu-1Bx14 (+)/Bx20 were distinguished by insertions and deletions in their promoter regions. The Glu-1Bx6, Glu-1Bx7, Glu-1By9, Glu-1Bx14 (-), and Glu-1By15/By20 alleles were distinguished by using insertions and deletions in the gene-coding region. Glu-1By13, Glu-1By16, and Glu-1By18 were dominantly identified in the gene-coding region. We also developed a marker to distinguish between the two Glu-1Bx14 alleles. However, the Glu-1Bx14 (+) + Glu-1By15 and Glu-1Bx20 + Glu-1By20 allele combinations could not be distinguished using PCR markers. The high-molecular-weight glutenin subunits of wheat varieties were analyzed by ultra-performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the findings were compared with the results of PCR analysis. CONCLUSIONS Seven Glu-1Bx and four Glu-1By allele detection markers were developed to detect nine Glu-1Bx and seven Glu-1By locus alleles, respectively. Integrating previously reported markers and 11 newly developed PCR markers improves allelic identification of the Glu-B1 locus and facilitates more effective analysis of Glu-B1 alleles molecular variations, which may improve the end-use quality of wheat.
Collapse
Affiliation(s)
- Myoung Hui Lee
- National Institute of Crop Science, Rural Development Administration, Wanju, 55365, Korea
| | - Kyeong-Min Kim
- National Institute of Crop Science, Rural Development Administration, Wanju, 55365, Korea
| | - Chon-Sik Kang
- National Institute of Crop Science, Rural Development Administration, Wanju, 55365, Korea
| | - Mira Yoon
- National Institute of Crop Science, Rural Development Administration, Wanju, 55365, Korea
| | - Ki-Chang Jang
- National Institute of Crop Science, Rural Development Administration, Wanju, 55365, Korea
| | - Changhyun Choi
- National Institute of Crop Science, Rural Development Administration, Wanju, 55365, Korea.
| |
Collapse
|
4
|
Kim KH, Kim JY. Understanding Wheat Starch Metabolism in Properties, Environmental Stress Condition, and Molecular Approaches for Value-Added Utilization. PLANTS (BASEL, SWITZERLAND) 2021; 10:2282. [PMID: 34834645 PMCID: PMC8624758 DOI: 10.3390/plants10112282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 01/19/2023]
Abstract
Wheat starch is one of the most important components in wheat grain and is extensively used as the main source in bread, noodles, and cookies. The wheat endosperm is composed of about 70% starch, so differences in the quality and quantity of starch affect the flour processing characteristics. Investigations on starch composition, structure, morphology, molecular markers, and transformations are providing new and efficient techniques that can improve the quality of bread wheat. Additionally, wheat starch composition and quality are varied due to genetics and environmental factors. Starch is more sensitive to heat and drought stress compared to storage proteins. These stresses also have a great influence on the grain filling period and anthesis, and, consequently, a negative effect on starch synthesis. Sucrose metabolizing and starch synthesis enzymes are suppressed under heat and drought stress during the grain filling period. Therefore, it is important to illustrate starch and sucrose mechanisms during plant responses in the grain filling period. In recent years, most of these quality traits have been investigated through genetic modification studies. This is an attractive approach to improve functional properties in wheat starch. The new information collected from hybrid and transgenic plants is expected to help develop novel starch for understanding wheat starch biosynthesis and commercial use. Wheat transformation research using plant genetic engineering technology is the main purpose of continuously controlling and analyzing the properties of wheat starch. The aim of this paper is to review the structure, biosynthesis mechanism, quality, and response to heat and drought stress of wheat starch. Additionally, molecular markers and transformation studies are reviewed to elucidate starch quality in wheat.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Department of Life Science, Dongguk University-Seoul, Seoul 04620, Korea;
| | - Jae-Yoon Kim
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
5
|
Jang YR, Kim S, Sim JR, Lee SB, Lim SH, Kang CS, Choi C, Goo TW, Lee JY. High-throughput analysis of high-molecular weight glutenin subunits in 665 wheat genotypes using an optimized MALDI-TOF-MS method. 3 Biotech 2021; 11:92. [PMID: 33520578 PMCID: PMC7829314 DOI: 10.1007/s13205-020-02637-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022] Open
Abstract
Gluten protein composition determines the rheological characteristics of wheat dough and is influenced by variable alleles with distinct effects on processing properties. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), we determined the high-molecular weight glutenin subunit (HMW-GS) composition of 665 wheat genotypes employed in breeding programs in South Korea. We identified 22 HMW-GS alleles, including 3 corresponding to the Glu-A1 locus, 14 to Glu-B1, and 5 to Glu-D1. The Glu-1 quality score, which is an important criterion for high-quality wheat development, was found to be 10 for 105/665 (15.79%) of the studied genotypes, and included the following combinations of HMW-GS: 2*, 7 + 8, 5 + 10; 2*, 17 + 18, 5 + 10; 1, 7 + 8, 5 + 10; and 1, 17 + 18, 5 + 10. To select wheat lines with the 1Bx7 overexpression (1Bx7OE) subunit, which is known to have a positive effect on wheat quality, we used a combination of MALDI-TOF-MS and published genotyping markers and identified 6 lines carrying 1Bx7OE out of the 217 showing a molecular weight of 83,400 Da, consistent with 1Bx7G2 and 1Bx7OE. This study demonstrates that the MALDI-TOF-MS method is fast, accurate, reliable, and effective in analyzing large numbers of wheat germplasms or breeding lines in a high-throughput manner. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02637-z.
Collapse
Affiliation(s)
- You-Ran Jang
- National Institute of Agricultural Science, RDA, Jeonju, 54874 South Korea
| | - Sewon Kim
- National Institute of Agricultural Science, RDA, Jeonju, 54874 South Korea
| | - Jae-Ryeong Sim
- National Institute of Agricultural Science, RDA, Jeonju, 54874 South Korea
| | - Su-Bin Lee
- National Institute of Agricultural Science, RDA, Jeonju, 54874 South Korea
| | - Sun-Hyung Lim
- Division of Horticultural Biotechnology, Hankyong National University, Anseong, 17579 South Korea
| | - Chon-Sik Kang
- National Institute of Crop Science, RDA, Jeonju, 55365 South Korea
| | - Changhyun Choi
- National Institute of Crop Science, RDA, Jeonju, 55365 South Korea
| | - Tae-Won Goo
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju, 38066 South Korea
| | - Jong-Yeol Lee
- National Institute of Agricultural Science, RDA, Jeonju, 54874 South Korea
| |
Collapse
|
6
|
Ravel C, Faye A, Ben-Sadoun S, Ranoux M, Dardevet M, Dupuits C, Exbrayat F, Poncet C, Sourdille P, Branlard G. SNP markers for early identification of high molecular weight glutenin subunits (HMW-GSs) in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:751-770. [PMID: 31907562 DOI: 10.1007/s00122-019-03505-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/06/2019] [Indexed: 05/20/2023]
Abstract
A set of eight SNP markers was developed to facilitate the early selection of HMW-GS alleles in breeding programmes. In bread wheat (Triticum aestivum), the high molecular weight glutenin subunits (HMW-GSs) are the most important determinants of technological quality. Known to be very diverse, HMW-GSs are encoded by the tightly linked genes Glu-1-1 and Glu-1-2. Alleles that improve the quality of dough have been identified. Up to now, sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) of grain proteins is the most widely used for their identification. To facilitate the early selection of HMW-GS alleles in breeding programmes, we developed DNA-based molecular markers. For each accession of a core collection (n = 364 lines) representative of worldwide bread wheat diversity, HMW-GSs were characterized by both genotyping and SDS-PAGE. Based on electrophoresis, we observed at least 8, 22 and 9 different alleles at the Glu-A1, Glu-B1 and Glu-D1 loci, respectively, including new variants. We designed a set of 17 single-nucleotide polymorphism (SNP) markers that were representative of the most frequent SDS-PAGE alleles at each locus. At Glu-A1 and Glu-D1, two and three marker-based haplotypes, respectively, captured the diversity of the SDS-PAGE alleles rather well. Discrepancies were found mainly for the Glu-B1 locus. However, statistical tests revealed that two markers at each Glu-B1 gene and their corresponding haplotypes were more significantly associated with the rheological properties of the dough than were the relevant SDS-PAGE alleles. To conclude, this study demonstrates that the SNP markers developed provide additional information on HMW-GS diversity. Two markers at Glu-A1, four at Glu-B1 and two at Glu-D1 constitute a useful toolbox for breeding wheat to improve end-use value.
Collapse
Affiliation(s)
- Catherine Ravel
- UMR1095, Genetics Diversity and Ecophysiology of Cereals, INRA,Clermont Auvergne University, 63000, Clermont-Ferrand, France.
| | - Annie Faye
- UMR1095, Genetics Diversity and Ecophysiology of Cereals, INRA,Clermont Auvergne University, 63000, Clermont-Ferrand, France
| | - Sarah Ben-Sadoun
- UMR1095, Genetics Diversity and Ecophysiology of Cereals, INRA,Clermont Auvergne University, 63000, Clermont-Ferrand, France
| | - Marion Ranoux
- UMR1095, Genetics Diversity and Ecophysiology of Cereals, INRA,Clermont Auvergne University, 63000, Clermont-Ferrand, France
| | - Mireille Dardevet
- UMR1095, Genetics Diversity and Ecophysiology of Cereals, INRA,Clermont Auvergne University, 63000, Clermont-Ferrand, France
| | - Cécile Dupuits
- UMR1095, Genetics Diversity and Ecophysiology of Cereals, INRA,Clermont Auvergne University, 63000, Clermont-Ferrand, France
| | - Florence Exbrayat
- UMR1095, Genetics Diversity and Ecophysiology of Cereals, INRA,Clermont Auvergne University, 63000, Clermont-Ferrand, France
| | - Charles Poncet
- UMR1095, Genetics Diversity and Ecophysiology of Cereals, INRA,Clermont Auvergne University, 63000, Clermont-Ferrand, France
| | - Pierre Sourdille
- UMR1095, Genetics Diversity and Ecophysiology of Cereals, INRA,Clermont Auvergne University, 63000, Clermont-Ferrand, France
| | - Gérard Branlard
- UMR1095, Genetics Diversity and Ecophysiology of Cereals, INRA,Clermont Auvergne University, 63000, Clermont-Ferrand, France
| |
Collapse
|
7
|
Mazzucotelli E, Sciara G, Mastrangelo AM, Desiderio F, Xu SS, Faris J, Hayden MJ, Tricker PJ, Ozkan H, Echenique V, Steffenson BJ, Knox R, Niane AA, Udupa SM, Longin FCH, Marone D, Petruzzino G, Corneti S, Ormanbekova D, Pozniak C, Roncallo PF, Mather D, Able JA, Amri A, Braun H, Ammar K, Baum M, Cattivelli L, Maccaferri M, Tuberosa R, Bassi FM. The Global Durum Wheat Panel (GDP): An International Platform to Identify and Exchange Beneficial Alleles. FRONTIERS IN PLANT SCIENCE 2020; 11:569905. [PMID: 33408724 PMCID: PMC7779600 DOI: 10.3389/fpls.2020.569905] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/24/2020] [Indexed: 05/04/2023]
Abstract
Representative, broad and diverse collections are a primary resource to dissect genetic diversity and meet pre-breeding and breeding goals through the identification of beneficial alleles for target traits. From 2,500 tetraploid wheat accessions obtained through an international collaborative effort, a Global Durum wheat Panel (GDP) of 1,011 genotypes was assembled that captured 94-97% of the original diversity. The GDP consists of a wide representation of Triticum turgidum ssp. durum modern germplasm and landraces, along with a selection of emmer and primitive tetraploid wheats to maximize diversity. GDP accessions were genotyped using the wheat iSelect 90K SNP array. Among modern durum accessions, breeding programs from Italy, France and Central Asia provided the highest level of genetic diversity, with only a moderate decrease in genetic diversity observed across nearly 50 years of breeding (1970-2018). Further, the breeding programs from Europe had the largest sets of unique alleles. LD was lower in the landraces (0.4 Mbp) than in modern germplasm (1.8 Mbp) at r 2 = 0.5. ADMIXTURE analysis of modern germplasm defined a minimum of 13 distinct genetic clusters (k), which could be traced to the breeding program of origin. Chromosome regions putatively subjected to strong selection pressure were identified from fixation index (F st ) and diversity reduction index (DRI) metrics in pairwise comparisons among decades of release and breeding programs. Clusters of putative selection sweeps (PSW) were identified as co-localized with major loci controlling phenology (Ppd and Vrn), plant height (Rht) and quality (gliadins and glutenins), underlining the role of the corresponding genes as driving elements in modern breeding. Public seed availability and deep genetic characterization of the GDP make this collection a unique and ideal resource to identify and map useful genetic diversity at loci of interest to any breeding program.
Collapse
Affiliation(s)
- Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Giuseppe Sciara
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Anna M. Mastrangelo
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, Foggia, Italy
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Francesca Desiderio
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Steven S. Xu
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Fargo, ND, United States
| | - Justin Faris
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Fargo, ND, United States
| | - Matthew J. Hayden
- Agriculture Victoria, Agribio, Centre for AgriBiosciences, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Penny J. Tricker
- School of Agriculture, Food and Wine, Faculty of Sciences, Waite Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Hakan Ozkan
- Department of Field Crops, Faculty of Agriculture, Çukurova University, Adana, Turkey
| | - Viviana Echenique
- Centro de Recursos Naturales Renovables de la Zona Semiárida, Departamento de Agronomía, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | - Brian J. Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Ron Knox
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Abdoul A. Niane
- International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon
| | - Sripada M. Udupa
- International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon
| | | | - Daniela Marone
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, Foggia, Italy
| | - Giuseppe Petruzzino
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, Foggia, Italy
| | - Simona Corneti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Danara Ormanbekova
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Curtis Pozniak
- Plant Sciences and Crop Development Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - Pablo F. Roncallo
- Centro de Recursos Naturales Renovables de la Zona Semiárida, Departamento de Agronomía, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | - Diane Mather
- School of Agriculture, Food and Wine, Faculty of Sciences, Waite Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Jason A. Able
- School of Agriculture, Food and Wine, Faculty of Sciences, Waite Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Ahmed Amri
- International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon
| | - Hans Braun
- Plant Sciences and Crop Development Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - Karim Ammar
- International Maize and Wheat Improvement Center, Texcoco de Mora, Mexico
| | - Michael Baum
- International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Roberto Tuberosa
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Filippo M. Bassi
- International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon
- *Correspondence: Filippo M. Bassi,
| |
Collapse
|
8
|
Janni M, Cadonici S, Bonas U, Grasso A, Dahab AAD, Visioli G, Pignone D, Ceriotti A, Marmiroli N. Gene-ecology of durum wheat HMW glutenin reflects their diffusion from the center of origin. Sci Rep 2018; 8:16929. [PMID: 30446715 PMCID: PMC6240061 DOI: 10.1038/s41598-018-35251-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 10/18/2018] [Indexed: 01/12/2023] Open
Abstract
The production of many food items processed from wheat grain relies on the use of high gluten strength flours. As a result, about 80% of the allelic variability in the genes encoding the glutenin proteins has been lost in the shift from landraces to modern cultivars. Here, the allelic variability in the genes encoding the high molecular weight glutenin subunits (HMW-GSs) has been characterized in 152 durum wheat lines developed from a set of landraces. The allelic composition at the two Glu-1 loci (Glu-A1 and -B1) was obtained at both the protein and the DNA level. The former locus was represented by three alleles, of which the null allele Glu-A1c was the most common. The Glu-B1 locus was more variable, with fifteen alleles represented, of which Glu-B1b (HMW-GSs 7 + 8), -B1d (6 + 8) and -B1e (20 + 20) were the most frequently occurring. The composition of HMW-GSs has been used to make inferences regarding the diffusion and diversification of durum wheat. The relationships of these allelic frequencies with their geographical distribution within the Mediterranean basin is discussed in terms of gene-ecology.
Collapse
Affiliation(s)
- M Janni
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Via Amendola 165/A, 70126, Bari, Italy.
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze 37/A, 43124, Parma, Italy.
| | - S Cadonici
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, 43124, Parma, Italy
| | - U Bonas
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, 43124, Parma, Italy
| | - A Grasso
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Via Bassini 15, 20133, Milano, Italy
| | - A A D Dahab
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Via Bassini 15, 20133, Milano, Italy
| | - G Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, 43124, Parma, Italy
| | - D Pignone
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Via Amendola 165/A, 70126, Bari, Italy
| | - A Ceriotti
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Via Bassini 15, 20133, Milano, Italy
| | - N Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, 43124, Parma, Italy
- Regione Emilia-Romagna (IT) SITEIA, PARMA Technopole, Parma, Italy
| |
Collapse
|
9
|
Zaitseva OI, Burakova AA, Babkenov AT, Babkenova SA, Utebayev MU, Lemesh VA. Allelic variation of high-molecular-weight glutenin genes in bread wheat. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717060123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Extraordinarily soft, medium-hard and hard Indian wheat varieties: Composition, protein profile, dough and baking properties. Food Res Int 2017; 100:306-317. [DOI: 10.1016/j.foodres.2017.08.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/19/2017] [Accepted: 08/22/2017] [Indexed: 11/19/2022]
|
11
|
Dias RDO, de Souza MA, Pirozi MR, Oliveira LDC, Pimentel AJB. Protein Profile and Molecular Markers Related to the Baking Quality of Brazilian Wheat Cultivars. Cereal Chem 2017. [DOI: 10.1094/cchem-09-16-0227-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Renata de O. Dias
- Universidade Federal de Viçosa, Departamento de Fitotecnia, Av. PH. Rolfs, s/n, Viçosa, 36570-000, Brazil
| | - Moacil A. de Souza
- Universidade Federal de Viçosa, Departamento de Fitotecnia, Av. PH. Rolfs, s/n, Viçosa, 36570-000, Brazil
| | - Mônica R. Pirozi
- Universidade Federal de Viçosa, Departamento de Tecnologia de Alimentos, Av. PH. Rolfs, s/n,Viçosa, 36570-000, Brazil
| | - Ludmilla de C. Oliveira
- Universidade Federal de Viçosa, Departamento de Tecnologia de Alimentos, Av. PH. Rolfs, s/n,Viçosa, 36570-000, Brazil
| | - Adérico J. B. Pimentel
- Universidade Federal do Oeste da Bahia, Campus Barra, Av. 23 de Agosto, s/n, Bairro Assunção, Barra, Bahia, 47100-000, Brazil
| |
Collapse
|
12
|
Rasheed A, Xia X, Yan Y, Appels R, Mahmood T, He Z. Wheat seed storage proteins: Advances in molecular genetics, diversity and breeding applications. J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2014.01.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|