1
|
Shewry P. Wheat grain proteins: Past, present, and future. Cereal Chem 2023; 100:9-22. [PMID: 37064052 PMCID: PMC10087814 DOI: 10.1002/cche.10585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/06/2022]
Abstract
Background and Objectives Research on wheat grain proteins is reviewed, including achievements over the past century and priorities for future research. The focus is on three groups of proteins that have major impacts on wheat quality and utilization: the gluten proteins which determine dough viscoelasticity but also trigger celiac disease in susceptible individuals, the puroindolines which are major determinants of grain texture and the amylase/trypsin inhibitors which are food and respiratory allergens and are implicated in triggering celiac disease and nonceliac wheat sensitivity. Findings Although earlier work focused on protein structure and properties, the development of genomics and high-sensitivity proteomics has resulted in the availability of a vast amount of information on the amino acid sequences of individual wheat proteins, including allelic variants of gluten proteins which are associated with good processing quality and of puroindolines, which are associated with a hard or soft grain texture, and on protein expression and polymorphism. Conclusions However, our ability to exploit this knowledge is limited by a lack of detailed understanding of the structure:function relationships of wheat proteins. In particular, we need to understand how the three-dimensional structures of the individual proteins determine their interactions with other grain components (to determine functional properties) and with the immune systems of susceptible consumers (to trigger adverse responses), how these interactions are affected by allelic variation, and how they can be manipulated. Significance and Novelty The article, therefore, identifies priorities for future research which should enable the adoption of a more rational approach to improving the quality of wheat grain proteins.
Collapse
|
2
|
In-vitro digestibility of rice starch and factors regulating its digestion process: A review. Carbohydr Polym 2022; 291:119600. [DOI: 10.1016/j.carbpol.2022.119600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022]
|
3
|
Normal-Phase HPLC-ELSD to Compare Lipid Profiles of Different Wheat Flours. Foods 2021; 10:foods10020428. [PMID: 33669180 PMCID: PMC7919678 DOI: 10.3390/foods10020428] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
Normal-phase high-performance liquid chromatography (HPLC) is widely used in combination with evaporative light scattering detection (ELSD) for separating and detecting lipids in various food samples. ELSD responses of different lipids were evaluated to elucidate the possibilities and challenges associated with quantification by means of HPLC-ELSD. Not only the number and type of polar functional groups but also the chain length and degree of unsaturation of (free or esterified) fatty acids (FAs) had a significant effect on ELSD responses. Tripalmitin and trilinolein yielded notably different ELSD responses, even if their constituting free FAs produced identical responses. How FA structure impacts ELSD responses of free FAs is thus not predictive for those of triacylglycerols and presumably other lipids containing esterified FAs. Because ELSD responses of lipids depend on the identity of the (esterified) FA(s) which they contain, fully accurate lipid quantification with HPLC-ELSD is challenging and time-consuming. Nonetheless, HPLC-ELSD is a good and fast technique to semi-quantitatively compare the levels of different lipid classes between samples of comparable FA composition. In this way, lipid profiles of different flours from near-isogenic wheat lines could be compared.
Collapse
|
4
|
Tu M, Li Y. Toward the Genetic Basis and Multiple QTLs of Kernel Hardness in Wheat. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1631. [PMID: 33255282 PMCID: PMC7760206 DOI: 10.3390/plants9121631] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/03/2022]
Abstract
Kernel hardness is one of the most important single traits of wheat seed. It classifies wheat cultivars, determines milling quality and affects many end-use qualities. Starch granule surfaces, polar lipids, storage protein matrices and Puroindolines potentially form a four-way interaction that controls wheat kernel hardness. As a genetic factor, Puroindoline polymorphism explains over 60% of the variation in kernel hardness. However, genetic factors other than Puroindolines remain to be exploited. Over the past two decades, efforts using population genetics have been increasing, and numerous kernel hardness-associated quantitative trait loci (QTLs) have been identified on almost every chromosome in wheat. Here, we summarize the state of the art for mapping kernel hardness. We emphasize that these steps in progress have benefitted from (1) the standardized methods for measuring kernel hardness, (2) the use of the appropriate germplasm and mapping population, and (3) the improvements in genotyping methods. Recently, abundant genomic resources have become available in wheat and related Triticeae species, including the high-quality reference genomes and advanced genotyping technologies. Finally, we provide perspectives on future research directions that will enhance our understanding of kernel hardness through the identification of multiple QTLs and will address challenges involved in fine-tuning kernel hardness and, consequently, food properties.
Collapse
Affiliation(s)
| | - Yin Li
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA;
| |
Collapse
|
5
|
The antimicrobial properties of the puroindolines, a review. World J Microbiol Biotechnol 2019; 35:86. [PMID: 31134452 DOI: 10.1007/s11274-019-2655-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
Abstract
Antimicrobial proteins, and especially antimicrobial peptides (AMPs) hold great promise in the control of animal and plant diseases with low risk of pathogen resistance. The two puroindolines, a and b, from wheat control endosperm softness of the wheat caryopsis (grain), but have also been shown to inhibit the growth and kill various bacteria and fungi, while showing little toxicity to erythrocytes. Puroindolines are small (~ 13 kDa) amphipathic proteins with a characteristic tryptophan-rich domain (TRD) that is part of an 18 or 19 amino acid residue loop subtended by a disulfide bond. This review presents a brief history of the puroindolines, their physical-chemical characteristics, their interaction with lipids and membranes, and their activity as antimicrobial proteins and AMPs. In this latter context, the use of the TRDs of puroindoline a and b in puroindoline AMP function is reviewed. The activity of puroindoline a and b and their AMPs appear to act through similar but somewhat different modes, which may involve membrane binding, membrane disruption and ion channel formation, and intra-cellular nucleic acid binding and metabolic disruption. Natural and synthetic mutants have identified key elements of the puroindolines for antimicrobial activity.
Collapse
|
6
|
Cornejo-Ramírez YI, Martínez-Cruz O, Del Toro-Sánchez CL, Wong-Corral FJ, Borboa-Flores J, Cinco-Moroyoqui FJ. The structural characteristics of starches and their functional properties. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2018.1518343] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Oliviert Martínez-Cruz
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México. C.P
| | | | | | - Jesús Borboa-Flores
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México. C.P
| | | |
Collapse
|
7
|
Wheat (Triticum aestivum L.) lipid species distribution in the different stages of straight dough bread making. Food Res Int 2018; 112:299-311. [DOI: 10.1016/j.foodres.2018.06.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/25/2018] [Accepted: 06/20/2018] [Indexed: 11/24/2022]
|
8
|
Quayson ET, Marti A, Morris CF, Marengo M, Bonomi F, Seetharaman K, Iametti S. Structural consequences of the interaction of puroindolines with gluten proteins. Food Chem 2018; 253:255-261. [PMID: 29502829 DOI: 10.1016/j.foodchem.2018.01.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/30/2017] [Accepted: 01/23/2018] [Indexed: 11/26/2022]
Abstract
The effect of puroindolines (PINs) on structural characteristics of wheat proteins was investigated in Triticum turgidum ssp. durum (cv. Svevo) and Triticum aestivum (cv. Alpowa) and in their respective derivatives in which PIN genes were expressed (Soft Svevo) or the distal end of the short arm of chromosome 5D was deleted and PINs were not expressed (Hard Alpowa). The presence of PINs decreased the amount of cold-SDS extractable proteins and the accessibility of protein thiols to specific reagents, but resulted in facilitated solvation of gluten proteins, as detected by tryptophan fluorescence measurements carried out on minimally mixed flour/water mixtures. We propose that PINs and gluten proteins are interacting in the grain or flour prior to mixing. Hydrophobic interactions between PINs and some of the gluten proteins modify the pattern of interactions among gluten proteins, thus providing an additional mechanistic rationale for the effects of PINs on kernel hardness.
Collapse
Affiliation(s)
- Enoch T Quayson
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave., St. Paul, MN 55108, USA; Department of Biochemistry, Science Building, University of Cape Coast, Cape Coast, Ghana
| | - Alessandra Marti
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave., St. Paul, MN 55108, USA; Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via G. Celoria 2, 20133 Milan, Italy.
| | - Craig F Morris
- USDA-ARS Western Wheat Quality Laboratory, Washington State University, E-202 Food Science & Human Nutrition Facility East, Pullman, WA 99164, USA
| | - Mauro Marengo
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via G. Celoria 2, 20133 Milan, Italy
| | - Francesco Bonomi
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via G. Celoria 2, 20133 Milan, Italy
| | - Koushik Seetharaman
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave., St. Paul, MN 55108, USA
| | - Stefania Iametti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via G. Celoria 2, 20133 Milan, Italy
| |
Collapse
|
9
|
Siliveru K, Jange C, Kwek J, Ambrose R. Granular bond number model to predict the flow of fine flour powders using particle properties. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2017.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Liu L, Guo Q, He Z, Xia X, Water DLE, Raymond CA, King GJ. Genotypic Variation in Wheat Flour Lysophospholipids. Molecules 2017; 22:E909. [PMID: 28561766 PMCID: PMC6152675 DOI: 10.3390/molecules22060909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 11/17/2022] Open
Abstract
Lysophospholipids (LPLs) are the most abundant polar lipids in wheat endosperm and naturally complex with amylose, affecting starch physicochemical properties. We analyzed LPLs in wheat flour from 58 cultivars which differ by grain hardness using liquid chromatography mass spectrometry (LCMS). There were significant differences in LPL content between cultivars, demonstrating that genotype rather than environment contributes most to the total variance in wheat endosperm LPLs. Polar lipids such as LPLs may play a role in grain hardness through their interaction with puroindoline proteins, however, no strong correlation between kernel hardness and LPLs was detected. This may reflect the location of LPLs within the starch granule as opposed to the puroindoline proteins outside starch granules. LPLs may have an indirect relationship with kernel hardness as they could share the same origin as polar lipids that interact with puroindoline on the starch granule surface.
Collapse
Affiliation(s)
- Lei Liu
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia.
| | - Qi Guo
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia.
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhonghu He
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- CIMMYT China Office, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xianchun Xia
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Daniel L E Water
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia.
| | - Carolyn A Raymond
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia.
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia.
| |
Collapse
|
11
|
Siliveru K, Kwek JW, Lau GML, Ambrose RPK. Image Analysis Approach to Understand the Differences in Flour Particle Surface and Shape Characteristics. Cereal Chem 2016. [DOI: 10.1094/cchem-05-15-0108-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kaliramesh Siliveru
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Jin W. Kwek
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Grace M. L. Lau
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, 627833, Singapore
| | - R. P. Kingsly Ambrose
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, U.S.A
| |
Collapse
|
12
|
|
13
|
González-Thuillier I, Salt L, Chope G, Penson S, Skeggs P, Tosi P, Powers SJ, Ward JL, Wilde P, Shewry PR, Haslam RP. Distribution of Lipids in the Grain of Wheat (cv. Hereward) Determined by Lipidomic Analysis of Milling and Pearling Fractions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10705-16. [PMID: 26582143 DOI: 10.1021/acs.jafc.5b05289] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Lipidomic analyses of milling and pearling fractions from wheat grain were carried out to determine differences in composition that could relate to the spatial distribution of lipids in the grain. Free fatty acids and triacylglycerols were major components in all fractions, but the relative contents of polar lipids varied, particularly those of lysophosphatidylcholine and digalactosyldiglyceride, which were enriched in flour fractions. By contrast, minor phospholipids were enriched in bran and offal fractions. The most abundant fatty acids in the analyzed acyl lipids were C16:0 and C18:2 and their combinations, including C36:4 and C34:2. Phospholipids and galactolipids have been reported to have beneficial properties for breadmaking, whereas free fatty acids and triacylglycerols are considered detrimental. The subtle differences in the compositions of fractions determined in the present study could therefore underpin the production of flour fractions with optimized compositions for different end uses.
Collapse
Affiliation(s)
| | - Louise Salt
- Food & Health Programme, Institute of Food Research , Norwich Research Park, Norwich NR4 7UA, United Kingdom
| | - Gemma Chope
- Campden BRI, Station Road, Chipping Campden, Gloucestershire GL55 6LD, United Kingdom
| | - Simon Penson
- Campden BRI, Station Road, Chipping Campden, Gloucestershire GL55 6LD, United Kingdom
| | - Peter Skeggs
- Hovis Limited, Lord Rank Centre, Lincoln Road, High Wycombe HP12 3QS, United Kingdom
| | - Paola Tosi
- School of Agriculture, Policy and Development, University of Reading , Whiteknights, P.O. Box 237, Reading RG6 6AR, United Kingdom
| | - Stephen J Powers
- Computational and Systems Biology, Rothamsted Research , Harpenden AL5 2JQ, United Kingdom
| | - Jane L Ward
- Plant Biology and Crop Science, Rothamsted Research , Harpenden AL5 2JQ, United Kingdom
| | - Peter Wilde
- Food & Health Programme, Institute of Food Research , Norwich Research Park, Norwich NR4 7UA, United Kingdom
| | - Peter R Shewry
- Plant Biology and Crop Science, Rothamsted Research , Harpenden AL5 2JQ, United Kingdom
- School of Agriculture, Policy and Development, University of Reading , Whiteknights, P.O. Box 237, Reading RG6 6AR, United Kingdom
| | - Richard P Haslam
- Biological Science and Crop Protection, Rothamsted Research , Harpenden AL5 2JQ, United Kingdom
| |
Collapse
|
14
|
Chichti E, George M, Delenne JY, Lullien-Pellerin V. Changes in the starch-protein interface depending on common wheat grain hardness revealed using atomic force microscopy. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:1-8. [PMID: 26398785 DOI: 10.1016/j.plantsci.2015.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 06/05/2023]
Abstract
The atomic force microscope tip was used to progressively abrade the surface of non-cut starch granules embedded in the endosperm protein matrix in grain sections from wheat near-isogenic lines differing in the puroindoline b gene and thus, hardness. In the hard near-isogenic wheat lines, starch granules exhibited two distinct profiles corresponding either to abrasion in the surrounding protein layer or the starch granule. An additional profile, only identified in soft lines, revealed a marked stop in the abrasion at the protein-starch transition similar to a lipid interface playing a lubricant role. It was related to the presence of both wild-type puroindolines, already suggested to act at the starch-protein interface through their association with polar lipids. This study revealed, for the first time, in situ differences in the nano-mechanical properties at the starch-protein interface in the endosperm of wheat grains depending on the puroindoline allelic status.
Collapse
Affiliation(s)
- Emna Chichti
- INRA, UMR 1208, Ingénierie des Agropolymères et Technologies Emergentes, 2 Place Viala, 34060 Montpellier Cedex 02, France.
| | - Matthieu George
- Institut Charles Coulomb, UMR 5221, CNRS-UM2, Place Eugène Bataillon, 34095 Montpellier Cedex, France.
| | - Jean-Yves Delenne
- INRA, UMR 1208, Ingénierie des Agropolymères et Technologies Emergentes, 2 Place Viala, 34060 Montpellier Cedex 02, France.
| | - Valérie Lullien-Pellerin
- INRA, UMR 1208, Ingénierie des Agropolymères et Technologies Emergentes, 2 Place Viala, 34060 Montpellier Cedex 02, France.
| |
Collapse
|
15
|
Ahmad FT, Mather DE, Law HY, Li M, Yousif SAJ, Chalmers KJ, Asenstorfer RE, Mares DJ. Genetic control of lutein esterification in wheat (Triticum aestivum L.) grain. J Cereal Sci 2015. [DOI: 10.1016/j.jcs.2015.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Gayral M, Bakan B, Dalgalarrondo M, Elmorjani K, Delluc C, Brunet S, Linossier L, Morel MH, Marion D. Lipid partitioning in maize (Zea mays L.) endosperm highlights relationships among starch lipids, amylose, and vitreousness. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3551-3558. [PMID: 25794198 DOI: 10.1021/acs.jafc.5b00293] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Content and composition of maize endosperm lipids and their partition in the floury and vitreous regions were determined for a set of inbred lines. Neutral lipids, i.e., triglycerides and free fatty acids, accounted for more than 80% of endosperm lipids and are almost 2 times higher in the floury than in the vitreous regions. The composition of endosperm lipids, including their fatty acid unsaturation levels, as well as their distribution may be related to metabolic specificities of the floury and vitreous regions in carbon and nitrogen storage and to the management of stress responses during endosperm cell development. Remarkably, the highest contents of starch lipids were observed systematically within the vitreous endosperm. These high amounts of starch lipids were mainly due to lysophosphatidylcholine and were tightly linked to the highest amylose content. Consequently, the formation of amylose-lysophosphatidylcholine complexes has to be considered as an outstanding mechanism affecting endosperm vitreousness.
Collapse
Affiliation(s)
- Mathieu Gayral
- †INRA, Biopolymers, Interactions, Assemblies Research Unit, La Géraudière 44316 Nantes Cedex 3, France
| | - Bénédicte Bakan
- †INRA, Biopolymers, Interactions, Assemblies Research Unit, La Géraudière 44316 Nantes Cedex 3, France
| | - Michele Dalgalarrondo
- †INRA, Biopolymers, Interactions, Assemblies Research Unit, La Géraudière 44316 Nantes Cedex 3, France
| | - Khalil Elmorjani
- †INRA, Biopolymers, Interactions, Assemblies Research Unit, La Géraudière 44316 Nantes Cedex 3, France
| | | | - Sylvie Brunet
- §Limagrain Cereal Ingredients ZAC Les Portes de Riom, Avenue George Gershwin 63200 RIOM Cedex, France
| | - Laurent Linossier
- §Limagrain Cereal Ingredients ZAC Les Portes de Riom, Avenue George Gershwin 63200 RIOM Cedex, France
| | - Marie-Hélène Morel
- ∥INRA, Agropolymers Engineering and Emerging Technologies, 2 place Pierre Viala, 34060 Montpellier Cedex 02, France
| | - Didier Marion
- †INRA, Biopolymers, Interactions, Assemblies Research Unit, La Géraudière 44316 Nantes Cedex 3, France
| |
Collapse
|
17
|
Bahrami N, Yonekura L, Linforth R, Carvalho da Silva M, Hill S, Penson S, Chope G, Fisk ID. Comparison of ambient solvent extraction methods for the analysis of fatty acids in non-starch lipids of flour and starch. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:415-23. [PMID: 24132804 PMCID: PMC4283047 DOI: 10.1002/jsfa.6449] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/01/2013] [Accepted: 10/16/2013] [Indexed: 05/13/2023]
Abstract
BACKGROUND Lipids are minor components of flours, but are major determinants of baking properties and end-product quality. To the best of our knowledge, there is no single solvent system currently known that efficiently extracts all non-starch lipids from all flours without the risk of chemical, mechanical or thermal damage. This paper compares nine ambient solvent systems (monophasic and biphasic) with varying polarities: Bligh and Dyer (BD); modified Bligh and Dyer using HCl (BDHCL); modified BD using NaCl (BDNaCl); methanol-chloroform-hexane (3:2:1, v/v); Hara and Radin (hexane-isopropanol, 3:2, v/v); water-saturated n-butanol; chloroform; methanol and hexane for their ability to extract total non-starch lipids (separated by lipid classes) from wheat flour (Triticum aestivum L.). Seven ambient extraction protocols were further compared for their ability to extract total non-starch lipids from three alternative samples: barley flour (Hordeum vulgare L.), maize starch (Zea mays L.) and tapioca starch (Manihot esculenta Crantz). RESULTS For wheat flour the original BD method and those containing HCl or NaCl tended to extract the maximum lipid and a significant correlation between lipid extraction yield (especially the glycolipids and phospholipids) and the polarity of the solvent was observed. For the wider range of samples BD and BD HCl repeatedly offered the maximum extraction yield and using pooled standardized (by sample) data from all flours, total non-starch lipid extraction yield was positively correlated with solvent polarity (r = 0.5682, P < 0.05) and water ratio in the solvent mixture (r = 0.5299, P < 0.05). CONCLUSION In general, BD-based methods showed better extraction yields compared to methods without the addition of water and, most interestingly, there was much greater method dependence of lipid yields in the starches when compared to the flour samples, which is due to the differences in lipid profiles between the two sample types (flours and starches).
Collapse
Affiliation(s)
- Niloufar Bahrami
- Division of Food Sciences, University of NottinghamSutton Bonington, Loughborough, LE12 5RD, UK
- * Correspondence to: Niloufar Bahrami or Ian Denis Fisk, Division of Food Sciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough LE12 5RD, UK. E-mail: ,
| | - Lina Yonekura
- Division of Food Sciences, University of NottinghamSutton Bonington, Loughborough, LE12 5RD, UK
| | - Robert Linforth
- Division of Food Sciences, University of NottinghamSutton Bonington, Loughborough, LE12 5RD, UK
| | | | - Sandra Hill
- Division of Food Sciences, University of NottinghamSutton Bonington, Loughborough, LE12 5RD, UK
| | - Simon Penson
- Campden BRI GroupChipping, Campden, GL55 6LD, USA
| | - Gemma Chope
- Campden BRI GroupChipping, Campden, GL55 6LD, USA
| | - Ian Denis Fisk
- Division of Food Sciences, University of NottinghamSutton Bonington, Loughborough, LE12 5RD, UK
- * Correspondence to: Niloufar Bahrami or Ian Denis Fisk, Division of Food Sciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough LE12 5RD, UK. E-mail: ,
| |
Collapse
|
18
|
Osipova SV, Permyakova MD, Permyakov AV. Role of non-prolamin proteins and low molecular weight redox agents in protein folding and polymerization in wheat grains and influence on baking quality parameters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:12065-12073. [PMID: 23170897 DOI: 10.1021/jf303513m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The various enzyme systems and low molecular weight (LMW) redox agents are related to the folding and polymerization of prolamins in the ripening wheat grains and the formation of baking quality. Protein disulfide isomerases (PDIs) and cyclophylins accelerate "correct" folding of prolamins, which is most likely necessary for the subsequent formation of the macromolecular structure of the gluten protein matrix. PDIs are also involved in the polymerization of prolamins, catalyzing the oxidation of protein sulfhydryl groups. Molecular chaperone binding BiP protein facilitates folding of prolamins, with its role increasing in the stressful conditions. Reducing systems of thioredoxin and glutaredoxin, LMW redox pairs GSH/GSSG and Asc/DHAsc, thiol oxidases, and lipoxygenases (LOXs) regulate redox balance and the rate of polymerization of prolamins at the different stages of grain ripening. Additionally, LOX is probably involved in the protein-starch-lipid interactions between the starch granule and the protein matrix, mediated by puroindolines, determining the formation of grain texture. It is assumed that the high variability of baking quality in different environmental conditions is due to the interaction of labile enzyme systems with the storage proteins in the developing wheat caryopsis.
Collapse
Affiliation(s)
- Svetlana V Osipova
- Siberian Institute of Plant Physiology, Biochemistry Sb RAS, Irkutsk, Russia.
| | | | | |
Collapse
|
19
|
Kim KH, Feiz L, Martin J, Giroux M. Puroindolines are associated with decreased polar lipid breakdown during wheat seed development. J Cereal Sci 2012. [DOI: 10.1016/j.jcs.2012.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Graybosch RA, Seabourn B, Chen YR, Blechl AE. Quality and Agronomic Effects of Three High-Molecular-Weight Glutenin Subunit Transgenic Events in Winter Wheat. Cereal Chem 2011. [DOI: 10.1094/cchem-08-10-0121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Robert A. Graybosch
- USDA-ARS, 137 Keim Hall, East Campus, University of Nebraska, Lincoln, NE
- Corresponding author.
| | | | | | - Ann E. Blechl
- USDA-ARS, Western Regional Research Center, Albany, CA
| |
Collapse
|
21
|
Development of wheat kernels with contrasting endosperm texture characteristics as determined by magnetic resonance imaging and time domain-nuclear magnetic resonance. J Cereal Sci 2010. [DOI: 10.1016/j.jcs.2010.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
|
23
|
Maningat CC, Seib PA. Understanding the Physicochemical and Functional Properties of Wheat Starch in Various Foods. Cereal Chem 2010. [DOI: 10.1094/cchem-87-4-0305] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Paul A. Seib
- Dept of Grain Science and Industry, Kansas State University, Manhattan, KS
- Corresponding author. Phone: 785‐532‐4088. Fax 785‐532‐7010. E‐mail:
| |
Collapse
|