1
|
Zhang X, Khan NA, Yao E, Kong F, Chen M, Khan RU, Liu X, Zhang Y, Xin H. Effect of growing regions on morphological characteristics, protein subfractions, rumen degradation and molecular structures of various whole-plant silage corn cultivars. PLoS One 2024; 19:e0282547. [PMID: 38206945 PMCID: PMC10783724 DOI: 10.1371/journal.pone.0282547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/02/2023] [Indexed: 01/13/2024] Open
Abstract
Little information exists on the variation in morphological characteristics, nutritional value, ruminal degradability, and molecular structural makeup of diverse whole-plant silage corn (WPSC) cultivars among different growing regions. This study investigated the between-regions (Beijing, Urumchi, Cangzhou, Liaoyuan, Tianjin) discrepancies in five widely used WPSC cultivars in China (FKBN, YQ889, YQ23, DK301 and ZD958), in terms of 1) morphological characteristics; 2) crude protein (CP) chemical profile; 3) Cornell Net Carbohydrate and Protein System (CNCPS) CP subfractions; 4) in situ CP degradation kinetics; and 5) CP molecular structures. Our results revealed significant growing region and WPSC cultivar interaction for all estimated morphological characteristics (P < 0.001), CP chemical profile (P < 0.001), CNCPS subfractions (P < 0.001) and CP molecular structural features (P < 0.05). Except ear weight (P = 0.18), all measured morphological characteristics varied among different growing regions (P < 0.001). Besides, WPSC cultivars planted in different areas had remarkably different CP chemical profiles and CNCPS subfractions (P < 0.001). All spectral parameters of protein primary structure of WPSC differed (P < 0.05) due to the growing regions, except amide II area (P = 0.28). Finally, the area ratio of amide I to II was negatively correlated with the contents of soluble CP (δ = -0.66; P = 0.002), CP (δ = -0.61; P = 0.006), non-protein nitrogen (δ = -0.56; P = 0.004) and acid detergent insoluble CP (δ = -0.43; P = 0.008), in conjunction with a positive correlation with moderately degradable CP (PB1; δ = 0.58; P = 0.01). In conclusion, the cultivar of DK301 exhibited high and stable CP content. The WPSC planted in Beijing showed high CP, SCP and NPN. The low rumen degradable protein of WPSC was observed in Urumchi. Meanwhile, above changes in protein profiles and digestibility were strongly connected with the ratio of amide I and amide II.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Nazir Ahmad Khan
- Department of Animal Nutrition, The University of Agriculture Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Enyue Yao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Fanlin Kong
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ming Chen
- College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Rifat Ullah Khan
- Department of Animal Nutrition, The University of Agriculture Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Xin Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hangshu Xin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Wang YL, Wang WK, Wu QC, Yang HJ. The release and catabolism of ferulic acid in plant cell wall by rumen microbes: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:335-344. [PMID: 35600541 PMCID: PMC9108465 DOI: 10.1016/j.aninu.2022.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/29/2021] [Accepted: 02/13/2022] [Indexed: 11/30/2022]
Abstract
Ferulic acid (FA) is one of the most abundant hydroxycinnamic acids in the plant world, especially in the cell wall of grain bran, in comparison with forage and crop residues. Previous studies noted that FA was mainly linked with arabinoxylans and lignin in plant cell walls in ester and ether covalent forms. After forages were ingested by ruminant animals or encountered rumen microbial fermentation in vitro, these cross-linkages form physical and chemical barriers to protect cell-wall carbohydrates from microbial attack and enzymatic hydrolysis. Additionally, increasing studies noted that FA presented some toxic effect on microbial growth in the rumen. In recent decades, many studies have addressed the relationships of ester and/or ether-linked FA with rumen nutrient digestibility, and there is still some controversy whether these linkages could be used as a predicator of forage digestibility in ruminants. The authors in this review summarized the possible relationships between ester and/or ether-linked FA and fiber digestion in ruminants. Rumen microbes, especially bacteria and fungi, were found capable of breaking down the ester linkages within plant cell walls by secreting feruloyl and p-coumaroyl esterase, resulting in the release of free FA and improvement of cell wall digestibility. The increasing evidence noted that these esterases secreted by rumen microbes presented synergistic effects with xylanase and cellulase to effectively hydrolyze forage cell walls. Some released FA were absorbed through the rumen wall directly and entered into blood circulation and presented antioxidant effects on host animals. The others were partially catabolized into volatile fatty acids by rumen microbes, and the possible catabolic pathways discussed. To better understand plant cell wall degradation in the rumen, the metabolic fate of FA along with lignin decomposition mechanisms are needed to be explored via future microbial isolation and incubation studies with aims to maximize dietary fiber intake and enhance fiber digestion in ruminant animals.
Collapse
Affiliation(s)
- Yan-Lu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei-Kang Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qi-Chao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hong-Jian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Effect of enzyme supplementation and extruding process on the digestibility of nutrients and phenolic acids of defatted rice bran based diets in ileal-cannulated growing pigs. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Bowman JGP, Boss DL, Surber LMM, Blake TK. Estimation of the net energy value of barley for finishing beef steers. Transl Anim Sci 2019; 3:1550-1560. [PMID: 32704918 DOI: 10.1093/tas/txz128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/25/2019] [Indexed: 11/14/2022] Open
Abstract
The objective of this study was to identify barley grain characteristics measured by laboratory procedures that could be used to predict barley energy content for finishing beef steers. Twenty-eight different barley genotypes were evaluated including 18 cultivars and 10 experimental lines. Laboratory analysis of barley samples included bulk density, particle size, N, ADF, starch, and ISDMD (in situ DM disappearance after 3 h of ruminal incubation). Animal performance data (BW, DMI, ADG, steer NEm, and NEg requirements) were collected from 26 feedlot experiments conducted in Montana and Idaho during a 10-yr period and were used to estimate barley NEm and NEg content. A total of 80 experimental units were available with each experimental unit being a diet mean from an individual feedlot experiment. Fifty-eight of the 80 experimental units were randomly selected and used in the development data set and the remaining 22 experimental units were used in the validation data set. Forward, backward, and stepwise selection methods were used to identify variables to be included in regression equations for NEm using PROC REG of SAS. Barley samples in the model development data set represented a wide range in concentrations (DM basis): N (1.6% to 2.8%), ISDMD (25.7% to 58.7%), ADF (3.6% to 8.0%), starch (44.1% to 62.4%), particle size (1,100 to 2,814 µm), and bulk density (50.8 to 69.4 kg/hL). The barley grain characteristics of particle size, ISDMD, starch, and ADF were the most important variables in six successful models (R 2 = 0.48 to 0.60; P = 0.001). The six prediction equations gave mean predicted values for NEm ranging from 1.99 to 2.05 Mcal/kg (average 2.04 Mcal/kg; 0.45% CV). The mean actual NEm values from animal performance trials ranged from 1.75 to 2.48 Mcal/kg (average 2.03 Mcal/kg; 6.5% CV). The mean bias or difference in predicted vs. actual values ranged from -0.001 to 0.005 Mcal/kg. Barley NEg values calculated from animal performance ranged from 1.13 to 1.78 Mcal/kg (average 1.39 Mcal/kg; 8.4% CV). Average predicted barley NEm and NEg were 0.02 and 0.01 Mcal/kg less, respectively, than the 2.06 Mcal/kg NEm and 1.40 Mcal/kg NEg reported by NRC. Barley NE can be predicted from simple laboratory procedures which will aid plant breeders developing new feed varieties and nutritionists formulating finishing rations for beef cattle.
Collapse
Affiliation(s)
- Jan G P Bowman
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT
| | - Darrin L Boss
- Department of Research Centers, Montana State University, Bozeman, MT
| | - Lisa M M Surber
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT
| | - Tom K Blake
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT
| |
Collapse
|
5
|
Krieg J, Seifried N, Steingass H, Rodehutscord M. In situ and in vitro evaluation of crude protein degradation and utilisable crude protein content of barley, rye and triticale grains for ruminants. J Anim Physiol Anim Nutr (Berl) 2017; 102:452-461. [PMID: 28984063 DOI: 10.1111/jpn.12767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/19/2017] [Indexed: 11/28/2022]
Abstract
Rations for dairy cows are comprised of high proportions of cereal grains. Thus, despite their low crude protein (CP) content, grains can contribute considerably to the CP intake of dairy cows. This study was conducted to describe and compare ruminal CP degradation of a broad range of barley, rye and triticale genotypes in situ and in vitro and different methods to estimate the utilisable CP at the duodenum (uCP). Twenty samples each of rye, barley and triticale were incubated in situ and in vitro. Exponential regression analyses were used to estimate in situ degradation parameters. Further, the effective degradability (ED), ruminal undegraded CP (UDP) and uCP for ruminal passage rates of 5% and 8% per hr were estimated. The uCP was estimated in vitro and based on two different approaches using in situ UDP data and estimates of microbial synthesised protein (based on fermented organic matter [fOM] or equations of the Gesellschaft für Ernährungsphysiologie). The degradation rate declined from rye (43% per hr) to triticale (27% per hr) to barley (20% per hr), and it exhibited remarkable variation between the genotypes of a single species. The maximal degradable CP fraction also differed between the species, but was overall very high (94%-99%). The lowest washout fraction (26%) and the highest variation in ED (77%-86% and 69%-80% for a passage rate of 5% and 8% per hr, respectively) were found in barley. The in situ uCP content (estimated using fOM) was lower for barley than for rye and triticale at ruminal passage rates of 5% and 8% per hr (barley: 157 g/kg DM at both passage rates; rye and triticale: 168 (at 5% per hr) and 169 (at 8% per hr) g/kg DM). In vitro estimations of uCP did not differ between the grain species and uCP estimated according to GfE was higher for triticale than for barley and rye, which did not differ. The low variation within a single grain species and the weak correlations between ruminal CP degradation and nutrient concentrations suggested that differentiation of ED and uCP between the genotypes of a single grain species is not necessary.
Collapse
Affiliation(s)
- J Krieg
- Institut für Nutztierwissenschaften, Universität Hohenheim, Stuttgart, Germany
| | - N Seifried
- Institut für Nutztierwissenschaften, Universität Hohenheim, Stuttgart, Germany
| | - H Steingass
- Institut für Nutztierwissenschaften, Universität Hohenheim, Stuttgart, Germany
| | - M Rodehutscord
- Institut für Nutztierwissenschaften, Universität Hohenheim, Stuttgart, Germany
| |
Collapse
|
6
|
Ji C, Zhang X, Yan X, Mostafizar Rahman M, Prates LL, Yu P. Bio-functions and molecular carbohydrate structure association study in forage with different source origins revealed using non-destructive vibrational molecular spectroscopy techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 183:260-266. [PMID: 28456084 DOI: 10.1016/j.saa.2017.04.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
The objectives of this study were to: 1) investigate forage carbohydrate molecular structure profiles; 2) bio-functions in terms of CHO rumen degradation characteristics and hourly effective degradation ratio of N to OM (HEDN/OM), and 3) quantify interactive association between molecular structures, bio-functions and nutrient availability. The vibrational molecular spectroscopy was applied to investigate the structure feature on a molecular basis. Two sourced-origin alfalfa forages were used as modeled forages. The results showed that the carbohydrate molecular structure profiles were highly linked to the bio-functions in terms of rumen degradation characteristics and hourly effective degradation ratio. The molecular spectroscopic technique can be used to detect forage carbohydrate structure features on a molecular basis and can be used to study interactive association between forage molecular structure and bio-functions.
Collapse
Affiliation(s)
- Cuiying Ji
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, 22 Jinjin Road, Tianjin 300384, People's Republic of China; Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Xuewei Zhang
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, 22 Jinjin Road, Tianjin 300384, People's Republic of China.
| | - Xiaogang Yan
- The Branch Academy of Animal Science, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin 136100, People's Republic of China
| | - M Mostafizar Rahman
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Luciana L Prates
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Peiqiang Yu
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
7
|
Sharma P, Kotari SL. Barley: Impact of processing on physicochemical and thermal properties—A review. FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1175009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Cao BB, Wang R, Bo YK, Bai S, Yang HJ. In situ rumen digestibility of ester-linked ferulic and p -coumaric acids in crop stover or straws in comparison with alfalfa and Chinese wild ryegrass hays. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2015.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Cao BB, Jin X, Yang HJ, Li SL, Jiang LS. Microbial release of ferulic and p-coumaric acids from forages and their digestibility in lactating cows fed total mixed rations with different forage combinations. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:650-5. [PMID: 25675865 DOI: 10.1002/jsfa.7136] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND Ferulic acid (FA) and p-coumaric acid (PCA) are widely distributed in graminaceous plant cell walls. This study investigated the in vitro and in vivo digestibility of ester-linked FA (FAest) and PCA (PCAest) in lactating dairy cows. RESULTS Regarding corn stover, ensiled corn stover, whole corn silage, Chinese wild ryegrass and alfalfa hay with different phenolic acid profiles, the in vitro rumen digestibility of forage FAest and PCAest was negatively correlated with the ether-linked FA content and original PCA/FA ratio in the forages. The concentration of both phenolic acids in culture fluids was low after a 72 h incubation, and the mixed rumen microorganisms metabolized nearly all phenolic acids released into the culture fluids. FAest digestibility in the whole digestive tract was negatively correlated with dietary PCA/FA ratio, but a converse result occurred with dietary PCAest digestibility. The digestibility in either the rumen or the whole digestive tract was greater for FAest than for PCAest. CONCLUSION Forage PCAest in comparison with FAest is not easily digested in either the rumen or the whole digestive tract, and they were negatively affected by forage FAeth content and lignification extent indicated by the original dietary PCA/FA ratio.
Collapse
Affiliation(s)
- Bin-Bin Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xin Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hong-Jian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Sheng-Li Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lin-Shu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
10
|
Yang L, Yu P. Synchrotron-based and globar-sourced molecular (micro)spectroscopy contributions to advances in new hulless barley (with structure alteration) research on molecular structure, molecular nutrition, and nutrient delivery. Crit Rev Food Sci Nutr 2015; 57:224-236. [DOI: 10.1080/10408398.2013.876386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ling Yang
- College of Agriculture and Bioresources, The University of Saskatchewan, Saskatoon, Canada
| | - Peiqiang Yu
- College of Agriculture and Bioresources, The University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
11
|
Abeysekara S, Damiran D, Yu P. Univariate and multivariate molecular spectral analyses of lipid related molecular structural components in relation to nutrient profile in feed and food mixtures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 102:432-442. [PMID: 23261514 DOI: 10.1016/j.saa.2012.09.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 09/08/2012] [Accepted: 09/20/2012] [Indexed: 06/01/2023]
Abstract
The objectives of this study were (i) to determine lipid related molecular structures components (functional groups) in feed combination of cereal grain (barley, Hordeum vulgare) and wheat (Triticum aestivum) based dried distillers grain solubles (wheat DDGSs) from bioethanol processing at five different combination ratios using univariate and multivariate molecular spectral analyses with infrared Fourier transform molecular spectroscopy, and (ii) to correlate lipid-related molecular-functional structure spectral profile to nutrient profiles. The spectral intensity of (i) CH(3) asymmetric, CH(2) asymmetric, CH(3) symmetric and CH(2) symmetric groups, (ii) unsaturation (CC) group, and (iii) carbonyl ester (CO) group were determined. Spectral differences of functional groups were detected by hierarchical cluster analysis (HCA) and principal components analysis (PCA). The results showed that the combination treatments significantly inflicted modifications (P<0.05) in nutrient profile and lipid related molecular spectral intensity (CH(2) asymmetric stretching peak height, CH(2) symmetric stretching peak height, ratio of CH(2) to CH(3) symmetric stretching peak intensity, and carbonyl peak area). Ratio of CH(2) to CH(3) symmetric stretching peak intensity, and carbonyl peak significantly correlated with nutrient profiles. Both PCA and HCA differentiated lipid-related spectrum. In conclusion, the changes of lipid molecular structure spectral profiles through feed combination could be detected using molecular spectroscopy. These changes were associated with nutrient profiles and functionality.
Collapse
Affiliation(s)
- Saman Abeysekara
- College of Agriculture and Bioresources, University of Saskatchewan Saskatoon, SK, Canada S7N 5A8
| | | | | |
Collapse
|
12
|
Wang R, Yang HJ, Yang X, Cao BH. Four phenolic acids determined by an improved HPLC method with a programmed ultraviolet wavelength detection and their relationships with lignin content in 13 agricultural residue feeds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:53-60. [PMID: 22692917 DOI: 10.1002/jsfa.5727] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 02/20/2012] [Accepted: 04/09/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Lignification-associated phenolic acids are widely distributed in graminaceous plant cell walls. This study developed a rapid and sensitive reversed-phase method for the simultaneous quantification of protocatechuic (PRA), vanillic (VA), ferulic (FA) and p-coumaric (PCA) acids and investigated the relationship between these compounds and lignin contents in 13 fibrous feeds. RESULTS The phenolic acids were identified at a column temperature of 15 °C in a single run, in which the wavelength was programmed at 260 nm for PRA and VA, then switched to 310 nm for FA and PCA determinations. Satisfactory precision, recovery, and linearity were obtained with this method. Among 13 feeds, PCA was most abundant, followed by FA, VA and PRA. Great variations in phenolic acid and lignin contents were found. FA content was much richer than PCA content in maize and wheat brans, and the highest PCA content occurred in maize stalks. Lignin content was correlated with proportions of FA (r = - 0.95) and PCA (r = 0.90) in the summed phenolic acids and the PCA:FA ratio (r = 0.91). CONCLUSION The improved method appears to be useful for simultaneous quantification of target phenolic compounds. Both FA and PCA may be good indicators for plant cell wall lignification associated with feed digestibility.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University (CAU), Beijing 100193, People's Republic of China
| | | | | | | |
Collapse
|
13
|
Yu P. Study of Barley Grain Molecular Structure for Ruminants Using DRIFT, FTIR-ATR and Synchrotron Radiation Infrared Microspectroscopy (SR-IMS): A Review. ACTA ACUST UNITED AC 2012. [DOI: 10.1088/1742-6596/359/1/012008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|