1
|
Menezes LAA, Pinheiro Costa Pimentel M, Alves TDO, Pimenta do Nascimento T, Evaristo JAM, Nogueira FCS, Ferreira MSL, De Dea Lindner J. Label-free quantitative proteomics to exploit the impact of sourdough fermentation on reducing wheat allergenic fractions. Food Chem 2024; 430:137037. [PMID: 37541040 DOI: 10.1016/j.foodchem.2023.137037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
The microbial consortia of lactic acid bacteria and yeast of sourdough can partially degrade gluten subunits associated with wheat-related diseases. This study evaluated how sourdough fermentation interferes with wheat protein profiles and if it can be related to the reduction expression of allergenic proteins. Samples from five bread doughs (Saccharomyces cerevisiae -C1; chemical acidification -C2, and three sourdoughs formulations -S1, S2, and S3) were sequentially extracted, digested, and submitted to shotgun label-free proteomic analysis. Eight-five proteins were identified as allergenic, mainly belonging to gliadin fraction, including seven containing the 33-mer peptide sequence. The highest immunogenic potential was found in dough C1 and S3, while the least reactive group consisted of S1 and C2. The two folds down expression of an α-gliadin containing the 33-mer sequence corroborates this. This finding may indicate the role of organic acids produced by the microbiota sourdough type II during fermentation in changing the protein profile.
Collapse
Affiliation(s)
- Leidiane Andreia Acordi Menezes
- Food Technology & Bioprocess Research Group, Food Science and Technology Department, Federal University of Santa Catarina (UFSC), 88034-001 Florianópolis, SC, Brazil
| | - Mariana Pinheiro Costa Pimentel
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), 22290-240 Rio de Janeiro, RJ, Brazil
| | - Thais de Oliveira Alves
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), 22290-240 Rio de Janeiro, RJ, Brazil
| | - Talita Pimenta do Nascimento
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), 22290-240 Rio de Janeiro, RJ, Brazil
| | - Joseph A M Evaristo
- Laboratory of Proteomics, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), 21941-909 Rio de Janeiro, RJ, Brazil
| | - Fábio C S Nogueira
- Laboratory of Proteomics, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), 21941-909 Rio de Janeiro, RJ, Brazil; Proteomics Unit, Institute of Chemistry, UFRJ, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), 22290-240 Rio de Janeiro, RJ, Brazil; Laboratory of Protein Biochemistry, Center of Innovation in Mass Spectrometry, UNIRIO, 22290-240 Rio de Janeiro, RJ, Brazil.
| | - Juliano De Dea Lindner
- Food Technology & Bioprocess Research Group, Food Science and Technology Department, Federal University of Santa Catarina (UFSC), 88034-001 Florianópolis, SC, Brazil.
| |
Collapse
|
2
|
Zhu X, Zhao XH, Zhang Q, Zhang N, Soladoye OP, Aluko RE, Zhang Y, Fu Y. How does a celiac iceberg really float? The relationship between celiac disease and gluten. Crit Rev Food Sci Nutr 2022; 63:9233-9261. [PMID: 35435771 DOI: 10.1080/10408398.2022.2064811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Celiac disease (CD) is an autoimmune intestinal disease caused by intolerance of genetically susceptible individuals after intake of gluten-containing grains (including wheat, barley, etc.) and their products. Currently, CD, with "iceberg" characteristics, affects a large population and is distributed over a wide range of individuals. This present review summarizes the latest research progress on the relationship between CD and gluten. Furthermore, the structure and function of gluten peptides related to CD, gluten detection methods, the effects of processing on gluten and gluten-free diets are emphatically reviewed. In addition, the current limitations in CD research are also discussed. The present work facilitates a comprehensive understanding of CD as well as gluten, which can provide a theoretical reference for future research.
Collapse
Affiliation(s)
- Xiaoxue Zhu
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| | - Xin-Huai Zhao
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, P. R. China
| | - Qiang Zhang
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, P. R. China
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Olugbenga P Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Svigelj R, Zuliani I, Grazioli C, Dossi N, Toniolo R. An Effective Label-Free Electrochemical Aptasensor Based on Gold Nanoparticles for Gluten Detection. NANOMATERIALS 2022; 12:nano12060987. [PMID: 35335800 PMCID: PMC8953296 DOI: 10.3390/nano12060987] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/20/2022]
Abstract
Nanomaterials can be used to modify electrodes and improve the conductivity and the performance of electrochemical sensors. Among various nanomaterials, gold-based nanostructures have been used as an anchoring platform for the functionalization of biosensor surfaces. One of the main advantages of using gold for the modification of electrodes is its great affinity for thiol-containing molecules, such as proteins, forming a strong Au-S bond. In this work, we present an impedimetric biosensor based on gold nanoparticles and a truncated aptamer for the quantification of gluten in hydrolyzed matrices such as beer and soy sauce. A good relationship between the Rct values and PWG-Gliadin concentration was found in the range between 0.1–1 mg L−1 of gliadin (corresponding to 0.2–2 mg L−1 of gluten) with a limit of detection of 0.05 mg L−1 of gliadin (corresponding to 0.1 mg L−1 of gluten). The label-free assay was also successfully applied for the determination of real food samples.
Collapse
|
4
|
Ma F, Baik BK. Influences of grain and protein characteristics on in vitro protein digestibility of modern and ancient wheat species. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4578-4584. [PMID: 33474737 DOI: 10.1002/jsfa.11100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The resistance of proteins to gastrointestinal digestion contributes to their ability to act as allergens. Near-complete digestion of protein in wheat products is important with respect to avoiding the potential immunogenic effects of undigested peptides. Five modern US wheat classes (soft red winter, hard winter, hard red spring, club and durum) including 17 wheat varieties, as well as three ancient wheat classes (spelt, emmer and einkorn) including nine wheat varieties, were analyzed for kernel hardness (KH) and flour protein characteristics, in addition to in vitro protein digestibility (IVPD) of cooked flour, flour without albumins and globulins (FWOAG), gluten, albumins, and globulins, aiming to identify the factors influencing the protein digestibility of flour. RESULTS IVPDs of flour, FWOAG, gluten and albumins of wheat varieties ranged from 86.5% to 92.3%, 85.8% to 90.3%, 90.6% to 94.6% and 74.8% to 85.1%, respectively. The IVPD of gluten was significantly higher than the IVPDs of flour and FWOAG, indicating that non-protein components substantially affect protein digestibility. Significant differences were observed in IVPDs of flour and albumins among eight wheat classes, but not in the IVPDs of FWOAG, gluten and globulins. There were apparent differences in undigested protein bands and intensities of wheat classes with low and high flour IVPDs. KH and albumin proportion exhibited negative and positive relationships, respectively, with flour IVPD. CONCLUSION The results of the present study demonstrate that KH, non-protein components and albumin proportion have a major influence on protein digestion and need to be considered when developing wheat cultivars with higher protein digestibility.
Collapse
Affiliation(s)
- Fengyun Ma
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS)-CSWQRU, Soft Wheat Quality Laboratory, Wooster, OH, USA
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, USA
| | - Byung-Kee Baik
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS)-CSWQRU, Soft Wheat Quality Laboratory, Wooster, OH, USA
| |
Collapse
|
5
|
Proteomic modelling of gluten digestion from a physiologically relevant food system: A focus on the digestion of immunogenic peptides from wheat implicated in celiac disease. Food Chem 2020; 333:127466. [DOI: 10.1016/j.foodchem.2020.127466] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/29/2020] [Accepted: 06/28/2020] [Indexed: 12/15/2022]
|
6
|
Penuelas J, Gargallo-Garriga A, Janssens IA, Ciais P, Obersteiner M, Klem K, Urban O, Zhu YG, Sardans J. Could Global Intensification of Nitrogen Fertilisation Increase Immunogenic Proteins and Favour the Spread of Coeliac Pathology? Foods 2020; 9:E1602. [PMID: 33158083 PMCID: PMC7694225 DOI: 10.3390/foods9111602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Fertilisation of cereal crops with nitrogen (N) has increased in the last five decades. In particular, the fertilisation of wheat crops increased by nearly one order of magnitude from 1961 to 2010, from 9.84 to 93.8 kg N ha-1 y-1. We hypothesized that this intensification of N fertilisation would increase the content of allergenic proteins in wheat which could likely be associated with the increased pathology of coeliac disease in human populations. An increase in the per capita intake of gliadin proteins, the group of gluten proteins principally responsible for the development of coeliac disease, would be the responsible factor. We conducted a global meta-analysis of available reports that supported our hypothesis: wheat plants growing in soils receiving higher doses of N fertilizer have higher total gluten, total gliadin, α/β-gliadin, γ-gliadin and ω-gliadin contents and higher gliadin transcription in their grain. We thereafter calculated the per capita annual average intake of gliadins from wheat and derived foods and found that it increased from 1961 to 2010 from approximately 2.4 to 3.8 kg y-1 per capita (+1.4 ± 0.18 kg y-1 per capita, mean ± SE), i.e., increased by 58 ± 7.5%. Finally, we found that this increase was positively correlated with the increase in the rates of coeliac disease in all the available studies with temporal series of coeliac disease. The impacts and damage of over-fertilisation have been observed at an environmental scale (e.g., eutrophication and acid rain), but a potential direct effect of over-fertilisation is thus also possible on human health (coeliac disease).
Collapse
Affiliation(s)
- Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193 Catalonia, Spain; (A.G.-G.); (J.S.)
- CREAF, Cerdanyola del Valles, 08193 Catalonia, Spain
- Global Change Research Institute, Czech Academy of Sciences, CZ-60300 Brno, Czech Republic; (K.K.); (O.U.)
| | - Albert Gargallo-Garriga
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193 Catalonia, Spain; (A.G.-G.); (J.S.)
- CREAF, Cerdanyola del Valles, 08193 Catalonia, Spain
- Global Change Research Institute, Czech Academy of Sciences, CZ-60300 Brno, Czech Republic; (K.K.); (O.U.)
| | - Ivan A. Janssens
- Research Group Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, B-2610 Wilrijk, Belgium;
| | - Philippe Ciais
- Laboratory of Climate and Environmental Sciences, Institute Pierre Simon Laplace (PSL), 91191 Gif-sur-Yvette, France;
| | - Michael Obersteiner
- Ecosystems Services and Management, International Institute for Applied Systems Analysis (IIASA), A-2361 Laxenburg, Austria;
| | - Karel Klem
- Global Change Research Institute, Czech Academy of Sciences, CZ-60300 Brno, Czech Republic; (K.K.); (O.U.)
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, CZ-60300 Brno, Czech Republic; (K.K.); (O.U.)
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Chinese Academy of Sciences, Xiamen 361021, China;
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193 Catalonia, Spain; (A.G.-G.); (J.S.)
- CREAF, Cerdanyola del Valles, 08193 Catalonia, Spain
- Global Change Research Institute, Czech Academy of Sciences, CZ-60300 Brno, Czech Republic; (K.K.); (O.U.)
| |
Collapse
|
7
|
Xiao P, Huang H, Li X, Chen J, Duan JA. Characterization, evaluation of nutritional parameters of Radix isatidis protein and its antioxidant activity in D-galactose induced ageing mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:297. [PMID: 31694618 PMCID: PMC6836523 DOI: 10.1186/s12906-019-2726-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/23/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Radix isatidis (Isatis indigotica Fort.) is an ancient medicinal herb, which has been applied to the prevention and treatment of influenza virus since ancient times. In recent years, the antioxidant activity of Radix isatidis has been widely concerned by researchers. Our previous studies have shown that Radix isatidis protein (RIP) has good antioxidant activity in vitro. In this study, the composition of the protein was characterized and its antioxidant activity in vivo was evaluated. METHODS The model of oxidative damage in mice was established by subcutaneous injection of D-galactose for 7 weeks. Commercially available kits were used to determine the content of protein and several oxidation indexes in different tissues of mice. The tissue samples were stained with hematoxylin and eosin (H&E) and the pathological changes were observed by optical microscope. The molecular weight of RIP was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The amino acid composition of RIP was determined by a non-derivative method developed by our research group. RESULTS RIP significantly increased the activities of antioxidant enzymes such as SOD, CAT, GSH-Px and total antioxidant capability (TAOC) but decreased the MDA level in the serum, kidney and liver. H&E stained sections of liver and kidney revealed D-galactose could cause serious injury and RIP could substantially attenuate the injury. The analysis of SDS-PAGE showed that four bands with molecular weights of 19.2 kDa, 21.5 kDa, 24.8 kDa and 40.0 kDa were the main protein components of RIP. CONCLUSIONS The results suggested that RIP had excellent antioxidant activity, which could be explored as a health-care product to retard aging and a good source of protein nutrition for human consumption.
Collapse
Affiliation(s)
- Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, 210023 China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Hongzhi Huang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Xiang Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Jianwei Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Jin-ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| |
Collapse
|
8
|
Affiliation(s)
- Maneka Malalgoda
- Department of Plant Sciences North Dakota State University Fargo ND USA
| | - Frank Manthey
- Department of Plant Sciences North Dakota State University Fargo ND USA
| | - Senay Simsek
- Department of Plant Sciences North Dakota State University Fargo ND USA
| |
Collapse
|
9
|
|
10
|
Prandi B, Tedeschi T, Folloni S, Galaverna G, Sforza S. Peptides from gluten digestion: A comparison between old and modern wheat varieties. Food Res Int 2016; 91:92-102. [PMID: 28290332 DOI: 10.1016/j.foodres.2016.11.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 01/25/2023]
Abstract
Coeliac disease is an autoimmune enteropathy that develops in genetically predisposed subjects after the ingestion of gluten or related proteins. Coeliac disease has an increasing incidence in the last years in western countries and it has been suggested that wheat breeding might have contributed to select more toxic forms of gluten. In this work, we analysed gluten peptides generated by in vitro digestion of different old and modern Triticum varieties, using LC-MS. We concluded that old varieties analysed produced a higher quantity of peptides containing immunogenic and toxic sequences than modern ones. Thus old wheat lines are not to be considered "safer" for subjects that are genetically predisposed to celiac disease.
Collapse
Affiliation(s)
- Barbara Prandi
- Department of Food Science, University of Parma, Parco Area delle Scienze 59/A, 43124, Italy.
| | - Tullia Tedeschi
- Department of Food Science, University of Parma, Parco Area delle Scienze 59/A, 43124, Italy
| | - Silvia Folloni
- Open Fields S.R.L., Strada Consortile 2, 43044 Collecchio, PR, Italy
| | - Gianni Galaverna
- Department of Food Science, University of Parma, Parco Area delle Scienze 59/A, 43124, Italy
| | - Stefano Sforza
- Department of Food Science, University of Parma, Parco Area delle Scienze 59/A, 43124, Italy
| |
Collapse
|
11
|
Gélinas P, McKinnon C. Gluten weight in ancient and modern wheat and the reactivity of epitopes towards R5 and G12 monoclonal antibodies. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13151] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Pierre Gélinas
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada; Saint-Hyacinthe QC Canada J2S 8E3
| | - Carole McKinnon
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada; Saint-Hyacinthe QC Canada J2S 8E3
| |
Collapse
|
12
|
van den Broeck HC, Cordewener JH, Nessen MA, America AH, van der Meer IM. Label free targeted detection and quantification of celiac disease immunogenic epitopes by mass spectrometry. J Chromatogr A 2015; 1391:60-71. [DOI: 10.1016/j.chroma.2015.02.070] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/23/2015] [Accepted: 02/26/2015] [Indexed: 01/28/2023]
|
13
|
Mamone G, Nitride C, Picariello G, Addeo F, Ferranti P, Mackie A. Tracking the fate of pasta (T. Durum semolina) immunogenic proteins by in vitro simulated digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2660-2667. [PMID: 25682706 DOI: 10.1021/jf505461x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of the present study was to identify and characterize the celiacogenic/immunogenic proteins and peptides released during digestion of pasta (Triticum durum semolina). Cooked pasta was digested using a harmonized in vitro static model of oral-gastro-duodenal digestion. The course of pasta protein digestion was monitored by SDS-PAGE, and gluten proteins were specifically analyzed by Western blot using sera of celiac patients. Among the allergens, nonspecific lipid-transfer protein was highly resistant to gastro-duodenal hydrolysis, while other digestion-stable allergens such as α-amylase/trypsin inhibitors were not detected being totally released in the pasta cooking water. To simulate the final stage of intestinal degradation, the gastro-duodenal digesta were incubated with porcine jejunal brush-border membrane hydrolases. Sixty-one peptides surviving the brush-border membrane peptidases were identified by liquid chromatography-mass spectrometry, including several gluten-derived sequences encrypting different motifs responsible for the induction of celiac disease. These results provide new insights into the persistence of wheat-derived peptides during digestion of cooked pasta samples.
Collapse
Affiliation(s)
- Gianfranco Mamone
- †Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, via Roma 64, 83100 Avellino, Italy
| | - Chiara Nitride
- ‡Dipartimento di Agraria, Università Federico II, via Università 100, 80055 Portici, Napoli, Italy
| | - Gianluca Picariello
- †Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, via Roma 64, 83100 Avellino, Italy
| | - Francesco Addeo
- †Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, via Roma 64, 83100 Avellino, Italy
- ‡Dipartimento di Agraria, Università Federico II, via Università 100, 80055 Portici, Napoli, Italy
| | - Pasquale Ferranti
- †Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, via Roma 64, 83100 Avellino, Italy
- ‡Dipartimento di Agraria, Università Federico II, via Università 100, 80055 Portici, Napoli, Italy
| | - Alan Mackie
- §Institute of Food Research, Norwich Research Park, Norwich, Norfolk NR4 7UA, United Kingdom
| |
Collapse
|
14
|
Prandi B, Faccini A, Tedeschi T, Cammerata A, Sgrulletta D, D'Egidio MG, Galaverna G, Sforza S. Qualitative and quantitative determination of peptides related to celiac disease in mixtures derived from different methods of simulated gastrointestinal digestion of wheat products. Anal Bioanal Chem 2014; 406:4765-75. [PMID: 24842402 DOI: 10.1007/s00216-014-7858-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/22/2014] [Accepted: 04/24/2014] [Indexed: 01/28/2023]
Abstract
During wheat digestion, gluten-derived proteolytic resistant peptides are generated, some of them involved in celiac disease. In vitro digestion models able to mimic the peptides generated in the human gastrointestinal tract are extremely useful to assess the pathogenicity of wheat-derived products. In this paper, samples belonging to three different durum wheat varieties were taken at six different steps of the pasta production chain and two different digestion models present in the literature were assessed on the different samples: a more complex one using artificial fluids simulating the exact composition of digestive juices, and a simplified method based on a peptic-tryptic/chymotryptic treatment of wheat ethanolic extract. An extensive characterization of the peptides generated using two in vitro digestion models was performed through LC-MS/MS techniques and the two methods were compared in order to evaluate qualitative and quantitative differences and their possible implications for varietal screening. Strong differences in the type of peptides produced with the two methods were detected, indicating that the simplified method can still be used for a varietal screening but is not representative of the peptides really generated after physiological human digestion. Results indicate a clear necessity of physiologically accurate models for simulating human gastrointestinal digestion of wheat products.
Collapse
Affiliation(s)
- Barbara Prandi
- Department of Food Science, University of Parma, Parco Area delle Scienze 59a, Parma, 43124, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Genetic and environmental factors affecting pathogenicity of wheat as related to celiac disease. J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2013.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|