1
|
Xia Q, Shui Y, Zhi H, Ali A, Yang Z, Gao Z. Exogeneous selenium enhances anthocyanin synthesis during grain development of colored-grain wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107742. [PMID: 37207492 DOI: 10.1016/j.plaphy.2023.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023]
Abstract
Anthocyanins and selenium (Se) play critical roles in antioxidant, anticancer, antibacterial, and antiviral treatments. Previous studies indicate that colored-grain wheat accumulates more Se than regular wheat, and Se synergistically promotes anthocyanin synthesis. However, the mechanism through which Se regulates anthocyanin synthesis remains unclear. We studied anthocyanin accumulation during the grain-filling stage of colored-grain wheat development by employing transcriptomics and metabolomics. We show that Se biofortification increased the concentrations of Se, anthocyanin, chlorophyll a and b, and carotenoids in colored-grain wheat. Genes related to biosynthesis of anthocyanins, phenylpropanoids biosynthesis, and flavonoids biosynthesis were significantly upregulated after Se treatment, which led to the accumulation of anthocyanin metabolites in colored-grain wheat. Genetic alterations in the expression profiles of several genes and transcription factors were observed, which slowed down lignin and proanthocyanidin biosynthesis and accelerated anthocyanin synthesis. Our results deepen the understanding of anthocyanin metabolism in Se-treated colored-grain wheat, which will likely promote harvest of these varieties.
Collapse
Affiliation(s)
- Qing Xia
- Department of Life Sciences, Lyuliang University, Lvliang, 033001, China; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, 030801, China
| | - Yang Shui
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, 030801, China
| | - Hui Zhi
- Department of Life Sciences, Lyuliang University, Lvliang, 033001, China; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, 030801, China
| | - Aamir Ali
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, 030801, China
| | - Zhenping Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, 030801, China; John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, 030801, China.
| |
Collapse
|
2
|
Feng J, Xu B, Ma D, Hao Z, Jia Y, Wang C, Wang L. Metabolite identification in fresh wheat grains of different colors and the influence of heat processing on metabolites via targeted and non-targeted metabolomics. Food Res Int 2022; 160:111728. [DOI: 10.1016/j.foodres.2022.111728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 01/21/2023]
|
3
|
Xia X, Gong R, Zhang C. Integrative analysis of transcriptome and metabolome reveals flavonoid biosynthesis regulation in Rhododendron pulchrum petals. BMC PLANT BIOLOGY 2022; 22:401. [PMID: 35974307 PMCID: PMC9380304 DOI: 10.1186/s12870-022-03762-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/15/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND Color is the major ornamental feature of the Rhododendron genus, and it is related to the contents of flavonoid in petals. However, the regulatory mechanism of flavonoid biosynthesis in Rhododendron pulchrum remains unknown. The transcriptome and metabolome analysis of Rhododendron pulchrum with white, pink and purple color in this study aimed to reveal the mechanism of flavonoid biosynthesis and to provide insight for improving the petal color. RESULTS Flavonoids and flavonols are the major components of flavonoid metabolites in R.pulchrum, such as laricitrin, apigenin, tricin, luteolin, isoorientin, isoscutellarein, diosmetin and their glycosides derivatives. With transcriptome and metabolome analysis, we found CHS, FLS, F3'H, F3'5'H, DFR, ANS, GT, FNS, IFR and FAOMT genes showed significantly differential expression in cultivar 'Zihe'. FNS and IFR were discovered to be associated with coloration in R.pulchrum for the first time. The FNS gene existed in the form of FNSI. The IFR gene and its related metabolites of medicarpin derivatives were highly expressed in purple petal. In cultivar 'Fenhe', up-regulation of F3'H and F3'5'H and down-regulation of 4CL, DFR, ANS, and GT were associated with pink coloration. With the transcription factor analysis, a subfamily of DREBs was found to be specifically enriched in pink petals. This suggested that the DREB family play an important role in pink coloration. In cultivars 'Baihe', flavonoid biosynthesis was inhibited by low expression of CHS, while pigment accumulation was inhibited by low expression of F3'5'H, DFR, and GT, which led to a white coloration. CONCLUSIONS By analyzing the transcriptome and metabolome of R.pulchrum, principal differential expression genes and metabolites of flavonoid biosynthesis pathway were identified. Many novel metabolites, genes, and transcription factors associated with coloration have been discovered. To reveal the mechanism of the coloration of different petals, a model of the flavonoid biosynthesis pathway of R.pulchrum was constructed. These results provide in depth information regarding the coloration of the petals and the flavonoid metabolism of R.pulcherum. The study of transcriptome and metabolome profiling gains insight for further genetic improvement in Rhododendron.
Collapse
Affiliation(s)
- Xi Xia
- Shanghai Urban Plant Resources Development and Application Engineering Research Center, Shanghai Botanical Garden, Shanghai, China
| | - Rui Gong
- Shanghai Urban Plant Resources Development and Application Engineering Research Center, Shanghai Botanical Garden, Shanghai, China
| | - Chunying Zhang
- Shanghai Urban Plant Resources Development and Application Engineering Research Center, Shanghai Botanical Garden, Shanghai, China.
| |
Collapse
|
4
|
Morphological, Molecular, and Biochemical Characterization of a Unique Lentil (Lens culinaris Medik.) Genotype Showing Seed-Coat Color Anomalies Due to Altered Anthocyanin Pathway. PLANTS 2022; 11:plants11141815. [PMID: 35890449 PMCID: PMC9319573 DOI: 10.3390/plants11141815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
This study reports the identification of a unique lentil (Lens culinaris Medik.) genotype L4717-NM, a natural mutant (NM) derived from a variety L4717, producing brown, black, and spotted seed-coat colored seeds in a single plant, generation after generation, in different frequencies. The genetic similarity of L4717 with that of L4717-NM expressing anomalous seed-coat color was established using 54 SSR markers. In addition, various biochemical parameters such as TPC (total phenolic content), TFC (total flavonoid content), DPPH (2,2-diphenyl-1-picrylhydrazyl), FRAP (ferric reducing antioxidant power), H2O2 (peroxide quantification), TCC (total carotenoids content), TAC (total anthocyanin content), and TAA (total ascorbic acid) were also studied in the seeds, sprouts, and seedlings of L4717, brown, black, and spotted seed-coat colored seeds. Stage-specific variations for the key biochemical parameters were recorded, and seedling stage was found the best for many parameters. Moreover, seeds with black seed coat showed better nutraceutical values for most of the studied traits. A highly significant (p ≤ 0.01) and positive correlation was observed between DPPH and TPC, TAA, TFC, etc., whereas, protein content showed a negative correlation with the other studied parameters. The seed coat is maternal tissue and we expect expression of seed-coat color as per the maternal genotype. However, such an anomalous seed-coat expression, which seems to probably be governed by some transposable element in the identified genotype, warrants more detailed studies involving exploitation of the anthocyanin pathway.
Collapse
|
5
|
Zhao X, Guo S, Ma Y, Zhao W, Wang P, Zhao S, Wang D. Ascorbic acid prevents yellowing of fresh-cut yam by regulating pigment biosynthesis and energy metabolism. Food Res Int 2022; 157:111424. [DOI: 10.1016/j.foodres.2022.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
|
6
|
Flores PC, Yoon JS, Kim DY, Seo YW. Transcriptome Analysis of MYB Genes and Patterns of Anthocyanin Accumulation During Seed Development in Wheat. Evol Bioinform Online 2022; 18:11769343221093341. [PMID: 35444404 PMCID: PMC9014723 DOI: 10.1177/11769343221093341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/14/2022] [Indexed: 12/01/2022] Open
Abstract
Plants accumulate key metabolites as a response of biotic/abiotic stress conditions. In seed coats, anthocyanins, carotenoids, and chlorophylls can be found. They have been associated as important antioxidants that affect germination. In wheat, anthocyanins can impart the seed coat color which have been recognized as health-promoting nutrients. Transcription factors act as master regulators of cellular processes. Transcription complexes such as MYB-bHLH-WD40 (MBW) regulate the expression of multiple target genes in various plant species. In this study, the spatiotemporal accumulation of seed coat pigments in different developmental stages (10, 20, 30, and 40 days after pollination) was analyzed using cryo-cuts. Moreover, the accumulation of phenolic, anthocyanin, and chlorophyll contents was quantified, and the expression of flavonoid biosynthetic genes was evaluated. Finally, transcriptome analysis was performed to analyze putative MYB genes related to seed coat color, followed by further characterization of putative genes. TaTCL2, an MYB gene, was cloned and sequenced. It was determined that TaTCL2 contains a SANT domain, which is often present in proteins participating in the response to anthocyanin accumulation. Moreover, TaTCL2 transcript levels were shown to be influenced by anthocyanin accumulation during grain development. Interaction network analysis showed interactions with GL2 (HD-ZIP IV), EGL3 (bHLH), and TTG1 (WD40). The findings of this study elucidate the mechanisms underlying color formation in Triticum aestivum L. seed coats.
Collapse
Affiliation(s)
| | - Jin Seok Yoon
- Ojeong Plant Breeding Research Center, Korea University, Seoul, Korea
| | - Dae Yeon Kim
- Department of Biotechnology, Korea University, Seoul, Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seoul, Korea
| |
Collapse
|
7
|
DOLEŽELOVÁ J, KRÁL M, POSPIECH M, TREMLOVÁ B, VYHNÁNEK T, WALCZYCKA M, FLORKIEWICZ A. Effect of storage and recipe on bioactive substance composition in bakery products made from a variety of colored wheats. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.27721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Martin KRÁL
- University of Veterinary Sciences Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
8
|
Liu X, Zhang M, Jiang X, Li H, Jia Z, Hao M, Jiang B, Huang L, Ning S, Yuan Z, Chen X, Chen X, Liu D, Liu B, Zhang L. TbMYC4A Is a Candidate Gene Controlling the Blue Aleurone Trait in a Wheat- Triticum boeoticum Substitution Line. FRONTIERS IN PLANT SCIENCE 2021; 12:762265. [PMID: 34804098 PMCID: PMC8603940 DOI: 10.3389/fpls.2021.762265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Triticum boeoticum Boiss (AbAb, 2n = 2x = 14) is one of the sources of the blue grain trait controlled by blue aleurone layer 2 (Ba2). However, the underlying genes have not been cloned. In this study, a transcriptomic comparison between a blue-grained wheat-T. boeoticum substitution line and its wheat parent identified 41 unigenes related to anthocyanin biosynthesis and 29 unigenes related to transport. The bHLH transcription factor gene TbMYC4A showed a higher expression level in the blue-grained substitution line. TbMYC4A contained the three characteristic bHLH transcription factor domains (bHLH-MYC_N, HLH and ACT-like) and clustered with genes identified from other wheat lines with the blue grain trait derived from other Triticeae species. TbMYC4A overexpression confirmed that it was a functional bHLH transcription factor. The analysis of a TbMYC4A-specific marker showed that the gene was also present in T. boeoticum and T. monococcum with blue aleurone but absent in other Triticeae materials with white aleurone. These results indicate that TbMYC4A is a candidate gene of Ba2 controlling the blue aleurone trait. The isolation of TbMYC4A is helpful for further clarifying the genetic mechanism of the blue aleurone trait and is of great significance for breeding blue-grained wheat varieties.
Collapse
Affiliation(s)
- Xin Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Minghu Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaomei Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hui Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhenjiao Jia
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Identification of colored wheat genotypes with suitable quality and yield traits in response to low nitrogen input. PLoS One 2020; 15:e0229535. [PMID: 32315299 PMCID: PMC7173872 DOI: 10.1371/journal.pone.0229535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/07/2020] [Indexed: 11/24/2022] Open
Abstract
Colored wheat is a valuable resource that is rich in anthocyanins and minerals and thus contributes additional nutritional value to a healthy human diet. However, the effects of nitrogen fertilization on anthocyanin content (AC) and the balance between quality and yield still merit discussion. In this study, blue, purple, and common-colored wheat genotypes were used to investigate three nutrient quality traits, seven processing quality traits, three yield traits and seven grain morphology traits at three nitrogen levels in two years to excavate their possible plasticity under low-nitrogen stress and the tradeoffs among these traits. The highest AC was found in the blue genotypes followed by the purple genotypes. Analysis of variance (ANOVA) showed that AC could be significantly increased by reducing N application, especially in the purple genotypes. Therefore, growing colored wheat with low nitrogen input could allow efficient harvesting of grain with higher AC. However, the other nutrient quality traits and most processing quality traits were observed to decrease under low-nitrogen (LN) stress. Additionally, a correlation analysis indicated that the nutrient quality traits had stable tradeoffs with thousand kernel weight at all N levels because of the significantly negative correlations among them. Therefore, the additive main effect and multiplicative interaction (AMMI) model was used to further identify the most suitable colored genotypes with the best yield potential and also nutrient quality relative characteristics under LN stress. The blue lines Lanmai2999 and purple varieties Zhongkezinuomai 168 were found to be specifically adapted to LN stress with the highest AC values and showed stable performance in the other nutrient quality- and yield-related features. To further investigate the possible mechanism of anthocyanin accumulation in response to reduced N application, the expression of four genes (TaCHS, TaFDR, TaCHI and TaANS) involved in the anthocyanin synthesis pathway was evaluated. All four genes were downregulated under high nitrogen fertilizer application, indicating that anthocyanin synthesis in colored wheat might be inhibited by nitrogen fertilizer. Therefore, this research provided information for optimizing nitrogen fertilizer management in producing colored wheat and also demonstrated that it is efficient and economical to plant colored wheat genotypes in nitrogen-poor areas for use in a healthy human diet, improving the benefits of wheat planting and facilitating nitrogen pollution control.
Collapse
|
10
|
Liu X, Feng Z, Liang D, Zhang M, Liu X, Hao M, Liu D, Ning S, Yuan Z, Jiang B, Chen X, Chen X, Zhang L. Development, identification, and characterization of blue-grained wheat-Triticum boeoticum substitution lines. J Appl Genet 2020; 61:169-177. [PMID: 32072449 DOI: 10.1007/s13353-020-00553-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Diploid wild einkorn wheat, Triticum boeoticum Boiss (AbAb, 2n = 2x = 14), is a wheat-related species with a blue aleurone layer. In this study, six blue-grained wheat lines were developed from F8 progeny of crosses between common wheat and T. boeoticum. The chromosome constitutions of these lines were characterized by fluorescence in situ hybridization (FISH) using the oligonucleotide probes Oligo-pTa535-1, Oligo-pSc119.2-1, Oligo-pTa71-2, and (AAC)7. Multicolor FISH using Oligo-pTa535-1, Oligo-pSc119.2-1, and Oligo-pTa71-2 identified all 42 common wheat chromosomes, while Oligo-pTa535-1 and (AAC)7 discriminated the 14 chromosomes of T. boeoticum. FISH revealed that all six blue-grained lines were wheat-T. boeoticum 4Ab (4B) disomic substitution lines. The substitution lines were validated by genotyping using the wheat 55 K single nucleotide polymorphism (SNP) array containing 53,063 markers. These 4Ab (4B) substitution lines represent novel germplasm for blue-grained wheat breeding. The FISH probes and SNP markers used here can be applied in the development of blue-grained wheat-Triticum boeoticum translocation lines.
Collapse
Affiliation(s)
- Xin Liu
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Zhen Feng
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Dongyu Liang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Minghu Zhang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Xiaojuan Liu
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China. .,Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
11
|
Zhang C, Yao X, Ren H, Wang K, Chang J. Isolation and Characterization of Three Chalcone Synthase Genes in Pecan ( Carya illinoinensis). Biomolecules 2019; 9:E236. [PMID: 31216753 PMCID: PMC6627513 DOI: 10.3390/biom9060236] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/04/2022] Open
Abstract
Phenolics are a group of important plant secondary metabolites that have been proven to possess remarkable antioxidant activity and to be beneficial for human health. Pecan nuts are an excellent source of dietary phenolics. In recent years, many studies have focused on the separation and biochemical analysis of pecan phenolics, but the molecular mechanisms of phenolic metabolism in pecans have not been fully elucidated, which significantly hinders quality breeding research for this plant. Chalcone synthase (CHS) plays crucial roles in phenolic biosynthesis. In this study, three Carya illinoinensisCHSs (CiCHS1, CiCHS2, and CiCHS3), were isolated and analyzed. CiCHS2 and CiCHS3 present high expression levels in different tissues, and they are also highly expressed at the initial developmental stages of kernels in three pecan genotypes. A correlation analysis was performed between the phenolic content and CHSs expression values during kernel development. The results indicated that the expression variations of CiCHS2 and CiCHS3 are significantly related to changes in total phenolic content. Therefore, CiCHSs play crucial roles in phenolic components synthesis in pecan. We believe that the isolation of CiCHSs is helpful for understanding phenolic metabolism in C. illinoinensis, which will improve quality breeding and resistance breeding studies in this plant.
Collapse
Affiliation(s)
- Chengcai Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China.
| | - Xiaohua Yao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China.
| | - Huadong Ren
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China.
| | - Kailiang Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China.
| | - Jun Chang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China.
| |
Collapse
|
12
|
Li X, Qian X, Lǚ X, Wang X, Ji N, Zhang M, Ren M. Upregulated structural and regulatory genes involved in anthocyanin biosynthesis for coloration of purple grains during the middle and late grain-filling stages. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:235-247. [PMID: 30014927 DOI: 10.1016/j.plaphy.2018.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Anthocyanin biosynthesis is controlled by structural and regulatory genes. Purple wheat grains accumulate anthocyanin during developmental processes. However, anthocyanin cannot accumulate at the beginning of grain formation. To understand the reason for this phenomenon, we performed observations and analyses of pigments, developmental stages, and the transcriptome of caryopsis in Triticum aestivum L. cv. Guizi 1 (GZ1). In the early grain-filling stage (10 dpa to 20 dpa), anthocyanin accumulated from nearly 0 mg·kg-1 (10 dpa) to 15.39 mg·kg-1 (20 dpa), and the expression levels of structural genes (except GzDFR) and main regulatory genes GzMYB-7D1 and GzMYC-2A1 were low. When the grains developed to the middle (20 dpa to 30 dpa) and late (30 dpa to 40 dpa) grain-filling stages, the anthocyanin content peaked at 197.31 mg·kg-1, and the expression levels of structural and regulatory genes at 25 dpa and 35 dpa were higher than that at 10 dpa. In particular, the expression levels of GzANS, Gz3GT, GzMYB-7D1, and GzMYC-2A1 were upregulated 45.74˜28.54, 765.00˜384.00, 419.00˜574.00, and 5.34˜29.05 times, respectively. Grains were also colored from green to purple. Anthocyanin accumulates in the pericarp and testa and is stored in vacuoles of epidermal and transverse cells. The major compositions are cyanidin and peonidin. These results revealed that the upregulated structural and regulatory genes in the middle and late grain-filling stages may result in the anthocyanin biosynthesis and coloration of grains, which provides new insights into anthocyanin biosynthesis and regulation mechanisms.
Collapse
Affiliation(s)
- Xiaolan Li
- School of Life Sciences, State Engineering Technology Institute for Karst Desertification Control, Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
| | - Xiaokang Qian
- School of Agriculture, Guizhou Sub-Center of National Wheat Improvement Center, Guizhou University, Guiyang, 550025, China
| | - Xiang Lǚ
- School of Life Sciences, State Engineering Technology Institute for Karst Desertification Control, Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Xiaohong Wang
- School of Life Sciences, State Engineering Technology Institute for Karst Desertification Control, Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Ning Ji
- School of Life Sciences, State Engineering Technology Institute for Karst Desertification Control, Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Mingsheng Zhang
- School of Life Sciences, State Engineering Technology Institute for Karst Desertification Control, Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
| | - Mingjian Ren
- School of Agriculture, Guizhou Sub-Center of National Wheat Improvement Center, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
13
|
Tian SQ, Chen ZC, Wei YC. Measurement of colour-grained wheat nutrient compounds and the application of combination technology in dough. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Abdel-Aal ESM, Hucl P, Rabalski I. Compositional and antioxidant properties of anthocyanin-rich products prepared from purple wheat. Food Chem 2018; 254:13-19. [DOI: 10.1016/j.foodchem.2018.01.170] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 10/18/2022]
|
15
|
Li N, Li S, Zhang K, Chen W, Zhang B, Wang D, Liu D, Liu B, Zhang H. ThMYC4E, candidate Blue aleurone 1 gene controlling the associated trait in Triticum aestivum. PLoS One 2017; 12:e0181116. [PMID: 28704468 PMCID: PMC5509306 DOI: 10.1371/journal.pone.0181116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/25/2017] [Indexed: 11/19/2022] Open
Abstract
Blue aleurone is a useful and interesting trait in common wheat that was derived from related species. Here, transcriptomes of blue and white aleurone were compared for isolating Blue aleurone 1 (Ba1) transferred from Thinopyrum ponticum. In the genes involved in anthocyanin biosynthesis, only a basic helix-loop-helix (bHLH) transcription factor, ThMYC4E, had a higher transcript level in blue aleurone phenotype, and was homologous to the genes on chromosome 4 of Triticum aestivum. ThMYC4E carried the characteristic domains (bHLH-MYC_N, HLH and ACT-like) of a bHLH transcription factor, and clustered with genes regulating anthocyanin biosynthesis upon phylogenetic analysis. The over-expression of ThMYC4E regulated anthocyanin biosynthesis with the coexpression of the MYB transcription factor ZmC1 from maize. ThMYC4E existed in the genomes of the addition, substitution and near isogenic lines with the blue aleurone trait derived from Th. ponticum, and could not be detected in any germplasm of T. urartu, T. monococcum, T. turgidum, Aegilops tauschii or T. aestivum, with white aleurone. These results suggested that ThMYC4E was candidate Ba1 gene controlling the blue aleurone trait in T. aestivum genotypes carrying Th. ponticum introgression. The ThMYC4E isolation aids in better understanding the genetic mechanisms of the blue aleurone trait and in its more effective use during wheat breeding.
Collapse
Affiliation(s)
- Na Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiming Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai Xining, China
| | - Kunpu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenjie Chen
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai Xining, China
| | - Bo Zhang
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai Xining, China
| | - Daowen Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai Xining, China
- * E-mail: (BL); (HZ)
| | - Huaigang Zhang
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai Xining, China
- * E-mail: (BL); (HZ)
| |
Collapse
|
16
|
Effects of Layering Milling Technology on Distribution of Green Wheat Main Physicochemical Parameters. J FOOD QUALITY 2017. [DOI: 10.1155/2017/8097893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With layered milling flour technology, the efficiency of the nutrient distribution and hardness was demonstrated with the green and normal wheat separation milling. The results showed that the total content of amino acid in green wheat was 8.3%–13.0% higher compared to the common wheat. Comparing the main nutriments Se, Fe, and Ca between green wheat and common wheat, the results showed that different milling treatment methods are capable of separating the different wheat flour from endosperms, bran, and aleurone layers. Micro- and physicochemical characterization of different wheat flour and layers by means of microscopy techniques and images analysis provided relevant qualitative and quantitative information, which can be useful for the study of the microstructure of green and normal wheat products and also for its processing and utilization.
Collapse
|
17
|
Genetic Diversity and Association Mapping for Agromorphological and Grain Quality Traits of a Structured Collection of Durum Wheat Landraces Including subsp. durum, turgidum and diccocon. PLoS One 2016; 11:e0166577. [PMID: 27846306 PMCID: PMC5113043 DOI: 10.1371/journal.pone.0166577] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/31/2016] [Indexed: 12/25/2022] Open
Abstract
Association mapping was performed for 18 agromorphological and grain quality traits in a set of 183 Spanish landraces, including subspecies durum, turgidum and dicoccon, genotyped with 749 DArT (Diversity Array Technology) markers. Large genetic and phenotypic variability was detected, being the level of diversity among the chromosomes and genomes heterogeneous, and sometimes complementary, among subspecies. Overall, 356 were monomorphic in at least one subspecies, mainly in dicoccon, and some of them coincidental between subspecies, especially between turgidum and dicoccon. Several of those fixed markers were associated to plant responses to environmental stresses or linked to genes subjected to selection during tetraploid wheat domestication process. A total of 85 stable MTAs (marker–trait associations) have been identified for the agromorphological and quality parameters, some of them common among subspecies and others subspecies-specific. For all the traits, we have found MTAs explaining more than 10% of the phenotypic variation in any of the three subspecies. The number of MTAs on the B genome exceeded that on the A genome in subsp. durum, equalled in turgidum and was below in dicoccon. The validation of several adaptive and quality trait MTAs by combining the association mapping with an analysis of the signature of selection, identifying the putative gene function of the marker, or by coincidences with previous reports, showed that our approach was successful for the detection of MTAs and the high potential of the collection to identify marker–trait associations. Novel MTAs not previously reported, some of them subspecies specific, have been described and provide new information about the genetic control of complex traits.
Collapse
|
18
|
Trojan V, Vyhnánek T, Štastník O, Mrkvicová E, Mareš J, Havel L. Detection of DNA fragments from wheat in blood of animals. J Verbrauch Lebensm 2016. [DOI: 10.1007/s00003-016-1035-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Zou H, Tzarfati R, Hübner S, Krugman T, Fahima T, Abbo S, Saranga Y, Korol AB. Transcriptome profiling of wheat glumes in wild emmer, hulled landraces and modern cultivars. BMC Genomics 2015; 16:777. [PMID: 26462652 PMCID: PMC4603339 DOI: 10.1186/s12864-015-1996-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/03/2015] [Indexed: 12/02/2022] Open
Abstract
Background Wheat domestication is considered as one of the most important events in the development of human civilization. Wheat spikelets have undergone significant changes during evolution under domestication, resulting in soft glumes and larger kernels that are released easily upon threshing. Our main goal was to explore changes in transcriptome expression in glumes that accompanied wheat evolution under domestication. Methods A total of six tetraploid wheat accessions were selected for transcriptome profiling based on their rachis brittleness and glumes toughness. RNA pools from glumes of the central spikelet at heading time were used to construct cDNA libraries for sequencing. The trimmed reads from each library were separately aligned to the reference sub-genomes A and B, which were extracted from wheat survey sequence. Differentially expression analysis and functional annotation were performed between wild and domesticated wheat, to identity candidate genes associated with evolution under domestication. Selected candidate genes were validated using real time PCR. Results Transcriptome profiles of wild emmer wheat, wheat landraces, and wheat cultivars were compared using next generation sequencing (RNA-seq). We have found a total of 194,893 transcripts, of which 73,150 were shared between wild, landraces, and cultivars. From 781 differentially expressed genes (DEGs), 336 were down-regulated and 445 were up-regulated in the domesticated compared to wild wheat genotypes. Gene Ontology (GO) annotation assigned 293 DEGs (37.5 %) to GO term groups, of which 134 (17.1 %) were down-regulated and 159 (20.4 %) up-regulated in the domesticated wheat. Some of the down-regulated DEGs in domesticated wheat are related to the biosynthetic pathways that eventually define the mechanical strength of the glumes, such as cell wall, lignin, pectin and wax biosynthesis. The reduction in gene expression of such genes, may explain the softness of the glumes in the domesticated forms. In addition, we have identified genes involved in nutrient remobilization that may affect grain size and other agronomic traits evolved under domestication. Conclusions The comparison of RNA-seq profiles between glumes of wheat groups differing in glumes toughness and rachis brittleness revealed a few DEGs that may be involved in glumes toughness and nutrient remobilization. These genes may be involved in processes of wheat improvement under domestication. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1996-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongda Zou
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa, 31905, Israel.
| | - Raanan Tzarfati
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa, 31905, Israel.
| | - Sariel Hübner
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Tamar Krugman
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa, 31905, Israel.
| | - Tzion Fahima
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa, 31905, Israel.
| | - Shahal Abbo
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Yehoshua Saranga
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Abraham B Korol
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa, 31905, Israel.
| |
Collapse
|
20
|
Sun W, Meng X, Liang L, Jiang W, Huang Y, He J, Hu H, Almqvist J, Gao X, Wang L. Molecular and Biochemical Analysis of Chalcone Synthase from Freesia hybrid in flavonoid biosynthetic pathway. PLoS One 2015; 10:e0119054. [PMID: 25742495 PMCID: PMC4351062 DOI: 10.1371/journal.pone.0119054] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/09/2015] [Indexed: 11/19/2022] Open
Abstract
Chalcone synthase (CHS) catalyzes the first committed step in the flavonoid biosynthetic pathway. In this study, the cDNA (FhCHS1) encoding CHS from Freesia hybrida was successfully isolated and analyzed. Multiple sequence alignments showed that both the conserved CHS active site residues and CHS signature sequence were found in the deduced amino acid sequence of FhCHS1. Meanwhile, crystallographic analysis revealed that protein structure of FhCHS1 is highly similar to that of alfalfa CHS2, and the biochemical analysis results indicated that it has an enzymatic role in naringenin biosynthesis. Moreover, quantitative real-time PCR was performed to detect the transcript levels of FhCHS1 in flowers and different tissues, and patterns of FhCHS1 expression in flowers showed significant correlation to the accumulation patterns of anthocyanin during flower development. To further characterize the functionality of FhCHS1, its ectopic expression in Arabidopsis thaliana tt4 mutants and Petunia hybrida was performed. The results showed that overexpression of FhCHS1 in tt4 mutants fully restored the pigmentation phenotype of the seed coats, cotyledons and hypocotyls, while transgenic petunia expressing FhCHS1 showed flower color alteration from white to pink. In summary, these results suggest that FhCHS1 plays an essential role in the biosynthesis of flavonoid in Freesia hybrida and may be used to modify the components of flavonoids in other plants.
Collapse
Affiliation(s)
- Wei Sun
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiangyu Meng
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lingjie Liang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Wangshu Jiang
- Department of Cell and Molecular Biology, Uppsala University, Uppsala Biomedical Center, Uppsala, 596, S-75124, Sweden
| | - Yafei Huang
- Department of Cell and Molecular Biology, Uppsala University, Uppsala Biomedical Center, Uppsala, 596, S-75124, Sweden
| | - Jing He
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Haiyan Hu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jonas Almqvist
- Department of Cell and Molecular Biology, Uppsala University, Uppsala Biomedical Center, Uppsala, 596, S-75124, Sweden
| | - Xiang Gao
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Li Wang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
21
|
Burešová V, Kopecký D, Bartoš J, Martinek P, Watanabe N, Vyhnánek T, Doležel J. Variation in genome composition of blue-aleurone wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:273-82. [PMID: 25399318 DOI: 10.1007/s00122-014-2427-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/08/2014] [Indexed: 05/08/2023]
Abstract
Different blue-aleurone wheats display major differences in chromosome composition, ranging from disomic chromosome additions, substitutions, single chromosome arm introgressions and chromosome translocation of Thinopyrum ponticum. Anthocyanins are of great importance for human health due to their antioxidant, anti-inflammatory, anti-microbial and anti-cancerogenic potential. In common wheat (Triticum aestivum L.) their content is low. However, elite lines with blue aleurone exhibit significantly increased levels of anthocyanins. These lines carry introgressed chromatin from wild relatives of wheat such as Thinopyrum ponticum and Triticum monococcum. The aim of our study was to characterize genomic constitutions of wheat lines with blue aleurone using genomic and fluorescence in situ hybridization. We used total genomic DNA of Th. ponticum and two repetitive DNA sequences (GAA repeat and the Afa family) as probes to identify individual chromosomes. This enabled precise localization of introgressed Th. ponticum chromatin. Our results revealed large variation in chromosome constitutions of the blue-aleurone wheats. Of 26 analyzed lines, 17 carried an introgression from Th. ponticum; the remaining nine lines presumably carry T. monococcum chromatin undetectable by the methods employed. Of the Th. ponticum introgressions, six different types were present, ranging from a ditelosomic addition (cv. Blue Norco) to a disomic substitution (cv. Blue Baart), substitution of complete (homologous) chromosome arms (line UC66049) and various translocations of distal parts of a chromosome arm(s). Different types of introgressions present support a hypothesis that the introgressions activate the blue aleurone trait present, but inactivated, in common wheat germplasm.
Collapse
Affiliation(s)
- Veronika Burešová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|