1
|
Duo H, Chhabra R, Muthusamy V, Dutta S, Katral A, Sarma GR, Chand G, Mishra SJ, Zunjare RU, Hossain F. Allelic Diversity and Development of Breeder-Friendly Marker Specific to floury2 Gene Regulating the Accumulation of α-Zeins and Essential Amino Acids in Maize Kernel. Biochem Genet 2024:10.1007/s10528-024-10935-x. [PMID: 39369369 DOI: 10.1007/s10528-024-10935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Maize zeins lack essential amino acids, such as methionine, lysine, and tryptophan. The floury2 (fl2) mutation reduces zein synthesis and increases methionine and lysine content in kernels. In this study, fl2 gene (1612 bp) was sequenced in eight wild-type and two mutant inbreds and detected 218 SNPs and 18 InDels. Transversion of C to T at 343 bp position caused the substitution of alanine by valine in the fl2 mutant. A PCR-based marker (FL-SNP-CT) was developed, which distinguished the favorable mutant fl2 allele (T) from the wild-type (C) Fl2 allele. Gene-based diversity analysis using seven gene-based InDel markers grouped 48 inbred lines into three major clusters, with an average genetic dissimilarity coefficient of 0.534. The average major allele frequency, gene diversity, heterozygosity, and polymorphism information content of the InDel markers were 0.701, 0.392, 0.039, and 0.318, respectively. Haplotype analysis revealed 29 haplotypes of fl2 gene among these 48 inbreds. Amino acid substitution (Ala-Val) at the signal peptide cleavage site produced unprocessed 24-kDa mutant protein instead of 22-kDa zein found in normal genotype. Eight paralogues of fl2 detected in the study showed variation in exon lengths (616-1170 bp) and translation lengths (135-267 amino acids). Orthologue analysis among 15 accessions of Sorghum bicolor and two accessions of Saccharum spontaneum revealed a single exon in fl2 gene, ranging from 267 to 810 bp. The study elucidated the molecular basis of fl2 mutation and reported a breeder-friendly marker for molecular breeding programs. This is the first study to characterize fl2 gene in a set of subtropically adapted inbreds.
Collapse
Affiliation(s)
- Hriipulou Duo
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rashmi Chhabra
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Suman Dutta
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Gulab Chand
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Subhra J Mishra
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
2
|
Stability of antioxidant and hypoglycemic activities of peptide fractions of Maize (Zea mays L.) under different processes. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Zhang X, Wang M, Zhang C, Dai C, Guan H, Zhang R. Genetic dissection of QTLs for starch content in four maize DH populations. FRONTIERS IN PLANT SCIENCE 2022; 13:950664. [PMID: 36275573 PMCID: PMC9583244 DOI: 10.3389/fpls.2022.950664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/30/2022] [Indexed: 05/17/2023]
Abstract
Starch is the principal carbohydrate source in maize kernels. Understanding the genetic basis of starch content (SC) benefits greatly in improving maize yield and optimizing end-use quality. Here, four double haploid (DH) populations were generated and were used to identify quantitative trait loci (QTLs) associated with SC. The phenotype of SC exhibited continuous and approximate normal distribution in each population. A total of 13 QTLs for SC in maize kernels was detected in a range of 3.65-16.18% of phenotypic variation explained (PVE). Among those, only some partly overlapped with QTLs previously known to be related to SC. Meanwhile, 12 genes involved in starch synthesis and metabolism located within QTLs were identified in this study. These QTLs will lay the foundation to explore candidate genes regulating SC in maize kernel and facilitate the application of molecular marker-assisted selection for a breeding program to cultivate maize varieties with a deal of grain quality.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Min Wang
- Institute of Advanced Agricultural Technology, Qilu Normal University, Jinan, China
| | | | - Changjun Dai
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Haitao Guan
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ruiying Zhang
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- *Correspondence: Ruiying Zhang
| |
Collapse
|
4
|
Zheng Y, Han X, Zhao Y, Zhu L, Huang Y, Jia X, Zhang Z, Chen J, Guo J. Association mapping for general combining ability with yield, plant height and ear height using F1 population in maize. PLoS One 2021; 16:e0258327. [PMID: 34653186 PMCID: PMC8519473 DOI: 10.1371/journal.pone.0258327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 09/24/2021] [Indexed: 11/19/2022] Open
Abstract
General combining ability (GCA) is an important index for inbred lines breeding of maize. To identify the genetic loci of GCA and associated agronomic traits, an association analysis with 195 SSRs was made in phenotypic traits of 240 F1 derived from 120 elite inbred lines containing current breeding resources of maize crossed with 2 testers (Zheng58 and Chang7-2) in two places in 2018. All of the 20 association loci detected for grain yield (GY), plant height (PH), ear height (EH) and GCA for the three traits in two places could explain a phenotypic variation range of 7.31%-9.29%. Among the 20 association loci, 9 (7.31%-9.04%) were associated with GY, 4 (7.22%-8.91%) were related to GCA of GY, 1 (7.56%) was associated with PH, and 3 (7.53%-8.96%) were related to EH. In addition, 3 loci (9.14%-9.29%) were associated with GCA of PH whereas no locus was identified for GCA of EH. In the comparison of the association loci detected in Baoding and Handan, interestingly, one locus (7.69% and 8.11%) was identified in both environments and one locus (7.52% and 7.82%) was identified for yield and GCA of yield. Therefore, the identification of GY-, PH-, EH- and GCA-related association loci could not only provide references for high yield breeding of maize, but also help us comprehend the relationships among GY, agricultural traits and GCA.
Collapse
Affiliation(s)
- Yunxiao Zheng
- Hebei Sub-Center of National Maize Improvement Center, Key Laboratory Jointly Constructed by the Ministry of Education and Hebei Province, Key Laboratory for Crop Germplasm Resources of Hebei, North China Key Laboratory for Crop Germplasm Resources under the Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xintong Han
- Hebei Sub-Center of National Maize Improvement Center, Key Laboratory Jointly Constructed by the Ministry of Education and Hebei Province, Key Laboratory for Crop Germplasm Resources of Hebei, North China Key Laboratory for Crop Germplasm Resources under the Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yongfeng Zhao
- Hebei Sub-Center of National Maize Improvement Center, Key Laboratory Jointly Constructed by the Ministry of Education and Hebei Province, Key Laboratory for Crop Germplasm Resources of Hebei, North China Key Laboratory for Crop Germplasm Resources under the Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Liying Zhu
- Hebei Sub-Center of National Maize Improvement Center, Key Laboratory Jointly Constructed by the Ministry of Education and Hebei Province, Key Laboratory for Crop Germplasm Resources of Hebei, North China Key Laboratory for Crop Germplasm Resources under the Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yaqun Huang
- Hebei Sub-Center of National Maize Improvement Center, Key Laboratory Jointly Constructed by the Ministry of Education and Hebei Province, Key Laboratory for Crop Germplasm Resources of Hebei, North China Key Laboratory for Crop Germplasm Resources under the Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xiaoyan Jia
- Hebei Sub-Center of National Maize Improvement Center, Key Laboratory Jointly Constructed by the Ministry of Education and Hebei Province, Key Laboratory for Crop Germplasm Resources of Hebei, North China Key Laboratory for Crop Germplasm Resources under the Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Zhongqin Zhang
- Hebei Sub-Center of National Maize Improvement Center, Key Laboratory Jointly Constructed by the Ministry of Education and Hebei Province, Key Laboratory for Crop Germplasm Resources of Hebei, North China Key Laboratory for Crop Germplasm Resources under the Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Jingtang Chen
- Hebei Sub-Center of National Maize Improvement Center, Key Laboratory Jointly Constructed by the Ministry of Education and Hebei Province, Key Laboratory for Crop Germplasm Resources of Hebei, North China Key Laboratory for Crop Germplasm Resources under the Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Jinjie Guo
- Hebei Sub-Center of National Maize Improvement Center, Key Laboratory Jointly Constructed by the Ministry of Education and Hebei Province, Key Laboratory for Crop Germplasm Resources of Hebei, North China Key Laboratory for Crop Germplasm Resources under the Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
5
|
Sethi M, Singh A, Kaur H, Phagna RK, Rakshit S, Chaudhary DP. Expression profile of protein fractions in the developing kernel of normal, Opaque-2 and quality protein maize. Sci Rep 2021; 11:2469. [PMID: 33510248 PMCID: PMC7844038 DOI: 10.1038/s41598-021-81906-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/03/2020] [Indexed: 11/29/2022] Open
Abstract
Maize protein quality is determined by the composition of its endosperm proteins, which are classified as nutritionally poor zeins (prolamin and prolamin-like) and nutritionally rich non-zeins (albumin, globulin, glutelin-like, and glutelin). Protein quality is considerably higher in opaque-2 mutants due to increased content of non-zeins over zeins. However, the opaque-2 endosperm is soft, which leads to poor agronomic performance and post-harvest infestation. Endosperm modification of opaque-2 had led to the development of Quality Protein Maize (QPM), which has higher protein quality along with hard kernel endosperm. The present study was planned to analyze the expression dynamics of different protein fractions in the endospem of developing maize kernel in normal, opaque-2 and QPM in response to the introgression of endosperm modifiers. Results revealed that albumin and globulin content decreases, whereas, prolamin, prolamin-like, glutelin-like, and glutelin content increases with kernel maturity. It has been observed that opaque-2 mutation affects protein expression at initial stages, whereas, the effect of endosperm modifiers was observed at the intermediate and later stages of kernel development. It has also been noted that prolamin, glutelin, and glutelin-like fractions can be used as quick markers for quality assessment for differentiating QPM varieties, even at the immature stage of kernel development. Overall, the present study implicates the role of different protein fractions in developing and utilizing nutritionally improved maize varieties.
Collapse
Affiliation(s)
- Mehak Sethi
- Department of Biochemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Alla Singh
- ICAR - Indian Institute of Maize Research, Ludhiana, 141004, Punjab, India
| | - Harmanjot Kaur
- Department of Biochemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | | | - Sujay Rakshit
- ICAR - Indian Institute of Maize Research, Ludhiana, 141004, Punjab, India
| | | |
Collapse
|
6
|
Salvador-Reyes R, Clerici MTPS. Peruvian Andean maize: General characteristics, nutritional properties, bioactive compounds, and culinary uses. Food Res Int 2019; 130:108934. [PMID: 32156382 DOI: 10.1016/j.foodres.2019.108934] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 11/17/2022]
Abstract
Ancient grains are considered to have been minimally changed by selective breeding, thus they are resistant to pests and environmental adversities and have stood out as a healthy food for consumption. This article aimed to review Peruvian Andean maize (PAM), which despite being used in local cuisine, little information has been found in literature about its characteristics and bioactive properties. The highest yielding varieties of PAM include Chullpi, Piscorunto, Sacsa, Giant Cuzco, and Purple, which differs from the commercial maize by their greater variety of color, size, and higher levels of protein, lipids, and bioactive compounds. The genetic characteristics of PAM associated with a geographical origin allow for the production of agricultural products with higher added value, without exhausting the existing plantations and maintaining the sustainability of the Andean region.
Collapse
Affiliation(s)
- Rebeca Salvador-Reyes
- Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, SP Zip-code 13083-862, Brazil
| | - Maria Teresa Pedrosa Silva Clerici
- Department of Food Technology, School of Food Engineering, University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, SP Zip-code 13083-862, Brazil.
| |
Collapse
|
7
|
Gayral M, Elmorjani K, Dalgalarrondo M, Balzergue SM, Pateyron S, Morel MH, Brunet S, Linossier L, Delluc C, Bakan B, Marion D. Responses to Hypoxia and Endoplasmic Reticulum Stress Discriminate the Development of Vitreous and Floury Endosperms of Conventional Maize ( Zea mays) Inbred Lines. FRONTIERS IN PLANT SCIENCE 2017; 8:557. [PMID: 28450877 PMCID: PMC5390489 DOI: 10.3389/fpls.2017.00557] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/28/2017] [Indexed: 05/17/2023]
Abstract
Major nutritional and agronomical issues relating to maize (Zea mays) grains depend on the vitreousness/hardness of its endosperm. To identify the corresponding molecular and cellular mechanisms, most studies have been conducted on opaque/floury mutants, and recently on Quality Protein Maize, a reversion of an opaque2 mutation by modifier genes. These mutant lines are far from conventional maize crops. Therefore, a dent and a flint inbred line were chosen for analysis of the transcriptome, amino acid, and sugar metabolites of developing central and peripheral endosperm that is, the forthcoming floury and vitreous regions of mature seeds, respectively. The results suggested that the formation of endosperm vitreousness is clearly associated with significant differences in the responses of the endosperm to hypoxia and endoplasmic reticulum stress. This occurs through a coordinated regulation of energy metabolism and storage protein (i.e., zein) biosynthesis during the grain-filling period. Indeed, genes involved in the glycolysis and tricarboxylic acid cycle are up-regulated in the periphery, while genes involved in alanine, sorbitol, and fermentative metabolisms are up-regulated in the endosperm center. This spatial metabolic regulation allows the production of ATP needed for the significant zein synthesis that occurs at the endosperm periphery; this finding agrees with the zein-decreasing gradient previously observed from the sub-aleurone layer to the endosperm center. The massive synthesis of proteins transiting through endoplasmic reticulum elicits the unfolded protein responses, as indicated by the splicing of bZip60 transcription factor. This splicing is relatively higher at the center of the endosperm than at its periphery. The biological responses associated with this developmental stress, which control the starch/protein balance, leading ultimately to the formation of the vitreous and floury regions of mature endosperm, are discussed.
Collapse
Affiliation(s)
- Mathieu Gayral
- Biopolymers, Interactions, Assemblies, Institut National de la Recherche AgronomiqueNantes, France
| | - Khalil Elmorjani
- Biopolymers, Interactions, Assemblies, Institut National de la Recherche AgronomiqueNantes, France
| | - Michèle Dalgalarrondo
- Biopolymers, Interactions, Assemblies, Institut National de la Recherche AgronomiqueNantes, France
| | - Sandrine M. Balzergue
- POPS (transcriptOmic Platform of iPS2) Platform, Centre National de la Recherche Scientifique, Institute of Plant Sciences Paris Saclay, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-SaclayOrsay, France
- Institute of Plant Sciences Paris-Saclay, Paris Diderot, Sorbonne Paris-CitéOrsay, France
| | - Stéphanie Pateyron
- POPS (transcriptOmic Platform of iPS2) Platform, Centre National de la Recherche Scientifique, Institute of Plant Sciences Paris Saclay, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-SaclayOrsay, France
- Institute of Plant Sciences Paris-Saclay, Paris Diderot, Sorbonne Paris-CitéOrsay, France
| | - Marie-Hélène Morel
- Agropolymer Engineering and Emerging Technologies, Institut National de la Recherche AgronomiqueMontpellier, France
| | | | | | | | - Bénédicte Bakan
- Biopolymers, Interactions, Assemblies, Institut National de la Recherche AgronomiqueNantes, France
| | - Didier Marion
- Biopolymers, Interactions, Assemblies, Institut National de la Recherche AgronomiqueNantes, France
- *Correspondence: Didier Marion
| |
Collapse
|
8
|
Gayral M, Gaillard C, Bakan B, Dalgalarrondo M, Elmorjani K, Delluc C, Brunet S, Linossier L, Morel MH, Marion D. Transition from vitreous to floury endosperm in maize ( Zea mays L.) kernels is related to protein and starch gradients. J Cereal Sci 2016. [DOI: 10.1016/j.jcs.2016.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Wang T, Wang M, Hu S, Xiao Y, Tong H, Pan Q, Xue J, Yan J, Li J, Yang X. Genetic basis of maize kernel starch content revealed by high-density single nucleotide polymorphism markers in a recombinant inbred line population. BMC PLANT BIOLOGY 2015; 15:288. [PMID: 26654531 PMCID: PMC4676831 DOI: 10.1186/s12870-015-0675-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/03/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Starch from maize kernels has diverse applications in human and animal diets and in industry and manufacturing. To meet the demands of these applications, starch quantity and quality need improvement, which requires a clear understanding of the functional mechanisms involved in starch biosynthesis and accumulation. In this study, a recombinant inbred line (RIL) population was developed from a cross between inbred lines CI7 and K22. The RIL population, along with both parents, was grown in three environments, and then genotyped using the MaizeSNP50 BeadChip and phenotyped to dissect the genetic architecture of starch content in maize kernels. RESULTS Based on the genetic linkage map constructed using 2,386 bins as markers, six quantitative trait loci (QTLs) for starch content in maize kernels were detected in the CI7/K22 RIL population. Each QTL accounted for 4.7% (qSTA9-1) to 10.6% (qSTA4-1) of the starch variation. The QTL interval was further reduced using the bin-map method, with the physical distance of a single bin at the QTL peak ranging from 81.7 kb to 2.2 Mb. Based on the functional annotations and prior knowledge of the genes in the top bin, seven genes were considered as potential candidate genes for the identified QTLs. Three of the genes encode enzymes in non-starch metabolism but may indirectly affect starch biosynthesis, and four genes may act as regulators of starch biosynthesis. CONCLUSIONS A few large-effect QTLs, together with a certain number of minor-effect QTLs, mainly contribute to the genetic architecture of kernel starch content in our maize biparental linkage population. All of the identified QTLs, especially the large-effect QTL, qSTA4-1, with a small QTL interval, will be useful for improving the maize kernel starch content through molecular breeding.
Collapse
Affiliation(s)
- Tingting Wang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genomics and Genetic Improvement, China Agricultural University, 100193, Beijing, China.
| | - Min Wang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genomics and Genetic Improvement, China Agricultural University, 100193, Beijing, China.
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Shuting Hu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genomics and Genetic Improvement, China Agricultural University, 100193, Beijing, China.
| | - Yingni Xiao
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genomics and Genetic Improvement, China Agricultural University, 100193, Beijing, China.
| | - Hao Tong
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Qingchun Pan
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Jiquan Xue
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jianbing Yan
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Jiansheng Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genomics and Genetic Improvement, China Agricultural University, 100193, Beijing, China.
| | - Xiaohong Yang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genomics and Genetic Improvement, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
10
|
Pineda-Hidalgo KV, Vega-Alvarez E, Calderon-Zamora L, Salazar-Salas NY, Gutierrez-Dorado R, Reyes-Moreno C, Bello-Perez LA, Lopez-Valenzuela JA. Physicochemical, Structural, and Proteomic Analysis of Starch Granules from Maize Landraces of Northwest Mexico. Cereal Chem 2015. [DOI: 10.1094/cchem-05-14-0099-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Karen V. Pineda-Hidalgo
- Maestría en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sin., Mexico
- Programa Regional de Doctorado en Biotecnología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sin., Mexico
| | - Elthon Vega-Alvarez
- Maestría en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sin., Mexico
| | - Loranda Calderon-Zamora
- Maestría en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sin., Mexico
| | - Nancy Y. Salazar-Salas
- Programa Regional de Doctorado en Biotecnología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sin., Mexico
| | - Roberto Gutierrez-Dorado
- Maestría en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sin., Mexico
- Programa Regional de Doctorado en Biotecnología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sin., Mexico
| | - Cuauhtemoc Reyes-Moreno
- Maestría en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sin., Mexico
- Programa Regional de Doctorado en Biotecnología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sin., Mexico
| | | | - Jose A. Lopez-Valenzuela
- Maestría en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sin., Mexico
- Programa Regional de Doctorado en Biotecnología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sin., Mexico
| |
Collapse
|
11
|
Gayral M, Bakan B, Dalgalarrondo M, Elmorjani K, Delluc C, Brunet S, Linossier L, Morel MH, Marion D. Lipid partitioning in maize (Zea mays L.) endosperm highlights relationships among starch lipids, amylose, and vitreousness. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3551-3558. [PMID: 25794198 DOI: 10.1021/acs.jafc.5b00293] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Content and composition of maize endosperm lipids and their partition in the floury and vitreous regions were determined for a set of inbred lines. Neutral lipids, i.e., triglycerides and free fatty acids, accounted for more than 80% of endosperm lipids and are almost 2 times higher in the floury than in the vitreous regions. The composition of endosperm lipids, including their fatty acid unsaturation levels, as well as their distribution may be related to metabolic specificities of the floury and vitreous regions in carbon and nitrogen storage and to the management of stress responses during endosperm cell development. Remarkably, the highest contents of starch lipids were observed systematically within the vitreous endosperm. These high amounts of starch lipids were mainly due to lysophosphatidylcholine and were tightly linked to the highest amylose content. Consequently, the formation of amylose-lysophosphatidylcholine complexes has to be considered as an outstanding mechanism affecting endosperm vitreousness.
Collapse
Affiliation(s)
- Mathieu Gayral
- †INRA, Biopolymers, Interactions, Assemblies Research Unit, La Géraudière 44316 Nantes Cedex 3, France
| | - Bénédicte Bakan
- †INRA, Biopolymers, Interactions, Assemblies Research Unit, La Géraudière 44316 Nantes Cedex 3, France
| | - Michele Dalgalarrondo
- †INRA, Biopolymers, Interactions, Assemblies Research Unit, La Géraudière 44316 Nantes Cedex 3, France
| | - Khalil Elmorjani
- †INRA, Biopolymers, Interactions, Assemblies Research Unit, La Géraudière 44316 Nantes Cedex 3, France
| | | | - Sylvie Brunet
- §Limagrain Cereal Ingredients ZAC Les Portes de Riom, Avenue George Gershwin 63200 RIOM Cedex, France
| | - Laurent Linossier
- §Limagrain Cereal Ingredients ZAC Les Portes de Riom, Avenue George Gershwin 63200 RIOM Cedex, France
| | - Marie-Hélène Morel
- ∥INRA, Agropolymers Engineering and Emerging Technologies, 2 place Pierre Viala, 34060 Montpellier Cedex 02, France
| | - Didier Marion
- †INRA, Biopolymers, Interactions, Assemblies Research Unit, La Géraudière 44316 Nantes Cedex 3, France
| |
Collapse
|