1
|
Song X, Xia Y, Du Y, Nasar J, Zhao Q. Response of starch molecular structures to temperature and light during rice grain-filling stage in karst region. Int J Biol Macromol 2025; 296:139649. [PMID: 39793839 DOI: 10.1016/j.ijbiomac.2025.139649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The impact of temperature and light on rice quality has high research interest, but the mechanism remains unclear. Herein, six rice cultivars were planted in karst regions of Xingyi (XY, 1300 m above sea level, asl), Guiding (GD, 1100 m asl), and Huangping (HP, 684 m asl) in China. Starch molecular structures were investigated to reveal the influences of ecological conditions during grain-filling stage on rice quality. Results revealed that the apparent amylose contents (AACs) increased by 11.40% to 27.49%, but the pasting viscosity and gelatinization temperature decreased with the increase in altitude. Rice grown in HP exhibited the highest gelatinization temperatures (68.41-75.22 °C), higher relative crystallinity, more proportions of long amylopectin chains (DP ≥ 37) and amylose with short chains (DP 100-1000). Environmental temperatures were positively correlated with peak viscosity, relative crystallinity, and proportions of long fb2 (DP 25-36) and fb3 chains (DP ≥ 37) (p < 0.05). Daily sunshine hour was positively correlated with short fa (DP 6-12) and long amylose (DP 2000-20,000) while negatively correlated with fb3 chains and short amylose (DP 100-1000). The changes in starch molecular structure in karst regions resulted in varying pasting properties and gelatinization temperature, ultimately leading to differences in rice quality.
Collapse
Affiliation(s)
- Xiaoyan Song
- Institute of Rice Industry Technology Research, College of Agronomy, Guizhou University, Guiyang 550025, China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
| | - Yuling Xia
- Institute of Rice Industry Technology Research, College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Yiyang Du
- Institute of Rice Industry Technology Research, College of Agronomy, Guizhou University, Guiyang 550025, China; College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jamal Nasar
- Institute of Rice Industry Technology Research, College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Quanzhi Zhao
- Institute of Rice Industry Technology Research, College of Agronomy, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Liu W, Wang K, Zhao Y, Shen Y, Zhang C, Peng Y, Ran X, Guo H, Ding Y, Tang S. Effects of nitrogen application on physicochemical properties of rice starch under elevated temperature. Food Chem 2024; 433:137303. [PMID: 37713937 DOI: 10.1016/j.foodchem.2023.137303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/17/2023]
Abstract
Nitrogen fertilization can mitigate the negative effects of high temperatures on rice. In this study, we simulated dynamic field temperature increases using a free-air temperature enhancement system. Changes in the physicochemical properties of starch were investigated under increasing nitrogen fertilization during the grain-filling stage. We observed that the application of nitrogen at elevated temperatures (ETN) did not change the chain length distribution compared with elevated temperatures (ET) alone; however, it did significantly increase the heights of the first and second amylose peaks. Specifically, ETN significantly decreased the height of fifth amylopectin and relative crystallinity, and the changes it introduced in the physicochemical properties of starch were greater than those of ET. Overall, these changes in starch properties may be associated with the ability of nitrogen to facilitate the maintenance of rice quality at high temperatures.
Collapse
Affiliation(s)
- Wenzhe Liu
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kailu Wang
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yufei Zhao
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yingying Shen
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chen Zhang
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuxuan Peng
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuan Ran
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hao Guo
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, PR China
| | - She Tang
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, PR China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, PR China.
| |
Collapse
|
3
|
Yang X, Peng T, Xu Y, Gao K, Zhao Q, Song X. Starch molecular structures in relation to properties of ratoon rice produced by different ratooning practices. Carbohydr Polym 2024; 323:121459. [PMID: 37940317 DOI: 10.1016/j.carbpol.2023.121459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023]
Abstract
The development of forage-grain ratoon rice (RR) pattern could ensure food security and promote silage production. Herein three indica rice varieties were used to investigate the influence of different forage clipping stages (heading, milk-ripe, wax-ripe, and full-ripe) on starch molecular structures and RR properties. The apparent amylose contents (AAC) of starches increased, but pasting viscosities, gelatinization temperatures and starch sizes decreased with the postponement of clipping stages due to the retardation of endosperm development. The starches showed A-type crystalline structure with increased in vitro digestibility; however relative crystallinity decreased by 13.45 % to 23.89 %. The short fa (DP 6-12) chains of amylopectin increased while long fb3 (DP ≥ 37) chains decreased (p < 0.05). The proportions of amylose chains with DP 100-2000 increased but those with DP 2000-20,000 decreased. Rice grain strength was positively correlated with fb3 chains while negatively correlated with fa chain. The hardness of cooked RR was positively correlated with AAC while negatively correlated with fb2 (DP 25-36). RR clipping at milk-ripe stage had the highest grain strength and moderate texture properties. The elucidation of structure-property relationships is helpful for RR utilization and development of suitable cultivation conditions for RR production.
Collapse
Affiliation(s)
- Xi Yang
- Institute of Rice Industry Technology Research, Guizhou University, Guiyang 550025, PR China
| | - Ting Peng
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yimei Xu
- Institute of Rice Industry Technology Research, Guizhou University, Guiyang 550025, PR China
| | - Kaige Gao
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Quanzhi Zhao
- Institute of Rice Industry Technology Research, Guizhou University, Guiyang 550025, PR China.
| | - Xiaoyan Song
- Institute of Rice Industry Technology Research, Guizhou University, Guiyang 550025, PR China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
4
|
Gu X, Zhang X, Lu W, Lu D. Starch structural and functional properties of waxy maize under different temperature regimes at grain formation stage. Food Chem X 2022; 16:100463. [PMID: 36217316 PMCID: PMC9547181 DOI: 10.1016/j.fochx.2022.100463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022] Open
Abstract
Excessive high temperature (>35 °C) enlarges and corrodes the starch granules. Heat stress increases the proportion of amylopectin long chains. Extremely high temperature induces the lowest pasting viscosity and the highest retrogradation of starch. This study provides scientific basis for the deterioration of waxy maize starch under severe high temperature.
Global warming affects crop productivity, but the influence is uncertain under different temperature regimes. The impact of growth temperatures (T0, 28 °C/20 °C; T1, 32 °C/24 °C; T2, 36 °C/28 °C; T3, 40 °C/32 °C) at grain formation stage on the waxy maize starch physicochemical properties of Suyunuo5 (heat-sensitive hybrid) and Yunuo7 (heat-tolerant hybrid) was studied. Compared with T0, T2 and T3 resulted in a higher number of starch granules with more pitted or uneven surface due to the enhanced enzymatic activities of α-amylase and β-amylase. Meanwhile, large starch granule size, long amylopectin chain-length, and high relative crystallinity under T2 and T3 resulted in low pasting viscosities and gelatinization enthalpy and high retrogradation percentage, especially under T3. The low coefficient variation of gelatinization temperatures indicated that the differences were meaninglessness. The influence of T1 on the pasting viscosities were more obvious in Suyunuo5. In conclusion, high temperatures at grain formation stage deteriorated the starch pasting and retrogradation properties.
Collapse
Affiliation(s)
- Xiaotian Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Xiaoyu Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Weiping Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou 225009, China
- Corresponding author at: Agricultural College of Yangzhou University, Yangzhou, China.
| |
Collapse
|
5
|
Influence of dynamic high temperature during grain filling on starch fine structure and functional properties of semi-waxy japonica rice. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Chen M, McClung AM, Rohila JS, Barnaby JY. Effects of alternate wetting and drying irrigation management and air temperature during grainfill on rice grain physicochemical and functionality traits of US inbred varieties. Cereal Chem 2021. [DOI: 10.1002/cche.10440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ming‐Hsuan Chen
- Dale Bumpers National Rice Research Center U.S. Department of Agriculture‐Agricultural Research Service (USDA‐ARS) Stuttgart AR USA
| | - Anna M. McClung
- Dale Bumpers National Rice Research Center U.S. Department of Agriculture‐Agricultural Research Service (USDA‐ARS) Stuttgart AR USA
| | - Jai S. Rohila
- Dale Bumpers National Rice Research Center U.S. Department of Agriculture‐Agricultural Research Service (USDA‐ARS) Stuttgart AR USA
| | - Jinyoung Y. Barnaby
- Dale Bumpers National Rice Research Center U.S. Department of Agriculture‐Agricultural Research Service (USDA‐ARS) Stuttgart AR USA
| |
Collapse
|
7
|
Duan H, Tong H, Zhu A, Zhang H, Liu L. Effects of heat, drought and their combined effects on morphological structure and physicochemical properties of rice (Oryza sativa L.) starch. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Fan X, Li Y, Zhu Y, Wang J, Zhao J, Sun X, Pan Y, Bian X, Zhang C, Zhao D, Liu Q. Characterization of physicochemical qualities and starch structures of two indica rice varieties tolerant to high temperature during grain filling. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|