1
|
Yang T, Wang P, Zhou Q, Jiang D, Jiang H. Effect of high-molecular-weight glutenin subunit deletion on gluten functionality and Chinese southern-type steamed bread quality. Food Chem 2025; 464:141664. [PMID: 39437528 DOI: 10.1016/j.foodchem.2024.141664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
High-molecular-weight glutenin subunit (HMW-GS) is key factor in gluten strength and end-use quality. However, the contribution of individual HMW-GS on dough strength and Chinese southern-type steamed bread (CSTSB) quality remained unknown. In this study, we investigated the effects of individual HMW-GS deletion on CSTSB quality. The HMW-GS deletion led to significant reductions in glutenin/gliadin ratios, disulfide bond content, and SDS-unextractable polymeric protein formation. Additionally, HMW-GS deletion resulted in decreased gluten protein chain length, molecular weight, and particle size, contributing to increased thermal instability and reduced crosslinking. The HMW-GS deletion weakened dough strength but improved CSTSB performance, particularly in Dx2d and Dy12d. In-silico analysis further revealed strong interactions between Bx7 and Dx2, primarily driven by desolvation energy, highlighting their crucial role in stabilizing gluten protein interactions.
Collapse
Affiliation(s)
- Tao Yang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shannxi 712100, China; College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Pei Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qin Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Dong Jiang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Hao Jiang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shannxi 712100, China
| |
Collapse
|
2
|
Yang T, Wang Y, Jiang J, Wang P, Zhong Y, Zhou Q, Wang X, Cai J, Huang M, Jiang D, Dai T, Cao W. Influence of High-Molecular-Weight Glutenin Subunit on Components and Multiscale Structure of Gluten and Dough Quality in Soft Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4943-4956. [PMID: 36924464 DOI: 10.1021/acs.jafc.2c07958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A set of high-molecular-weight glutenin subunit (HMW-GS) deletion lines were used to investigate the influences of HMW-GS on wheat gluten, and dough properties were investigated using a set of HMW-GS deletion lines. Results showed that HMW-GS deletion significantly decreased the dough stability time, as well as viscoelastic moduli (G' and G″), compared with the wild type, where the deletion of x-type HMW-GSs (Ax1d, Bx7d, and Dy12d) decreased more than y-type HMW-GSs (By8d and Dy12d). The deletion of HMW-GS significantly decreased HMW-GS contents and increased α-/γ-gliadin contents. A proteomic study showed that the HMW-GS deletion down-regulated the HMW-GS, β-amylase, serpins, and protein disulfide isomerase and up-regulated the LMW-GS, α/γ-gliadin, and α-amylase inhibitor. Meanwhile, HMW-GS deletion significantly decreased contents of β-turn and β-sheet. In addition, less energetically stable disulfide conformations (trans-gauche-gauche and trans-gauche-trans) were abundant in HMW-GS deletion lines. Furthermore, analysis of five HMW-GSs based on amino acid sequences proved that Dx2 and Bx7 had a more stable structure, followed by Ax1, then Dy12, and finally By8.
Collapse
Affiliation(s)
- Tao Yang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yingpeng Wang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jiali Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Pei Wang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yingxin Zhong
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Qin Zhou
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xiao Wang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jian Cai
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Mei Huang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Tingbo Dai
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Weixing Cao
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
3
|
Zang P, Gao Y, Chen P, Lv C, Zhao G. Recent Advances in the Study of Wheat Protein and Other Food Components Affecting the Gluten Network and the Properties of Noodles. Foods 2022; 11:3824. [PMID: 36496632 PMCID: PMC9738829 DOI: 10.3390/foods11233824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Upon hydrating and mixing wheat flour, wheat protein forms a network that strongly affects the structure and physicochemical properties of dough, thus affecting the properties of noodles. Different approaches have been taken to alter the gluten network structure in order to control the dough properties. In the current review, we summarize the structure and function of wheat protein, including glutenin and gliadin, and describe food components that may affect noodle quality by interacting with wheat protein. In fact, the ratio of glutenin to gliadin is closely related to the viscosity of dough, and disulfide bonds also contribute to the gluten network formation. Meanwhile, wheat protein coexists with starch and sugar in wheat dough, and thus the nature of starch may highly influence gluten formation as well. Salts, alkali, enzymes and powdered plant food can be added during dough processing to regulate the extensional properties of wheat noodles, obtaining noodles of high quality, with improved sensory and storage properties. This review describes specific methods to reinforce the wheat protein network and provides a reference for improving noodle quality.
Collapse
Affiliation(s)
- Peng Zang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Yang Gao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Pu Chen
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
4
|
Wang J, Wang C, Zhen S, Li X, Yan Y. Low-molecular-weight glutenin subunits from the 1U genome of Aegilops umbellulata confer superior dough rheological properties and improve breadmaking quality of bread wheat. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2156-2167. [PMID: 28960410 DOI: 10.1002/jsfa.8700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Wheat-related genomes may carry new glutenin genes with the potential for quality improvement of breadmaking. In this study, we estimated the gluten quality properties of the wheat line CNU609 derived from crossing between Chinese Spring (CS, Triticum aestivum L., 2n = 6x = 42, AABBDD) and the wheat Aegilops umbellulata (2n = 2x = 14, UU) 1U(1B) substitution line, and investigated the function of 1U-encoded low-molecular-weight glutenin subunits (LMW-GS). RESULTS The main quality parameters of CNU609 were significantly improved due to introgression of the 1U genome, including dough development time, stability time, farinograph quality number, gluten index, loaf size and inner structure. Glutenin analysis showed that CNU609 and CS had the same high-molecular-weight glutenin subunit (HMW-GS) composition, but CNU609 carried eight specific 1U genome-encoded LMW-GS. The introgression of the 1U-encoded LMW-GS led to more and larger protein body formation in the CNU609 endosperm. Two new LMW-m type genes from the 1U genome, designated Glu-U3a and Glu-U3b, were cloned and characterized. Secondary structure prediction implied that both Glu-U3a and Glu-U3b encode subunits with high α-helix and β-strand content that could benefit the formation of superior gluten structure. CONCLUSION Our results indicate that the 1U genome has superior LMW-GS that can be used as new gene resources for wheat gluten quality improvement. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jian Wang
- College of Life Science, Capital Normal University, Beijing, China
| | - Chang Wang
- College of Life Science, Capital Normal University, Beijing, China
| | - Shoumin Zhen
- College of Life Science, Capital Normal University, Beijing, China
| | - Xiaohui Li
- College of Life Science, Capital Normal University, Beijing, China
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, China
- Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, Jingzhou, China
| |
Collapse
|
5
|
Characterization of an Integrated Active Glu-1Ay Allele in Common Wheat from Wild Emmer and Its Potential Role in Flour Improvement. Int J Mol Sci 2018; 19:ijms19040923. [PMID: 29561750 PMCID: PMC5979310 DOI: 10.3390/ijms19040923] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 11/29/2022] Open
Abstract
Glu-1Ay, one of six genes encoding a high molecular weight glutenin subunit (HMW-GS), is frequently silenced in hexaploid common wheat. Here, an active allele of Glu-1Ay was integrated from wild emmer wheat (Triticum turgidum ssp. dicoccoides) accession D97 into the common wheat (Triticum aestivum) cultivar Chuannong 16 via the repeated self-fertilization of the pentaploid interspecific hybrid, culminating in the selection of a line TaAy7-40 shown to express the wild emmer Glu-1Ay allele. The open reading frame of this allele was a 1830 bp long sequence, demonstrated by its heterologous expression in Escherichia coli to encode a 608-residue polypeptide. Its nucleotide sequence was 99.2% identical to that of the sequence within the wild emmer parent. The TaAy7-40 introgression line containing the active Glu-1Ay allele showed higher protein content, higher sodium dodecyl sulfate (SDS) sedimentation value, higher content of wet gluten in the flour, higher grain weight, and bigger grain size than Chuannong 16. The end-use quality parameters of the TaAy7-40 were superior to those of the medium gluten common wheat cultivars Mianmai 37 and Neimai 9. Thus, the active Glu-1Ay allele might be of potential value in breeding programs designed to improve wheat flour quality.
Collapse
|
6
|
Alvarez JB, Guzmán C. Interspecific and intergeneric hybridization as a source of variation for wheat grain quality improvement. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:225-251. [PMID: 29285597 DOI: 10.1007/s00122-017-3042-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/17/2017] [Indexed: 05/27/2023]
Abstract
The hybridization events with wild relatives and old varieties are an alternative source for enlarging the wheat quality variability. This review describes these process and their effects on the technological and nutritional quality. Wheat quality and its end-uses are mainly based on variation in three traits: grain hardness, gluten quality and starch. In recent times, the importance of nutritional quality and health-related aspects has increased the range of these traits with the inclusion of other grain components such as vitamins, fibre and micronutrients. One option to enlarge the genetic variability in wheat for all these components has been the use of wild relatives, together with underutilised or neglected wheat varieties or species. In the current review, we summarise the role of each grain component in relation to grain quality, their variation in modern wheat and the alternative sources in which wheat breeders have found novel variation.
Collapse
Affiliation(s)
- Juan B Alvarez
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, CeiA3, 14071, Córdoba, Spain.
| | - Carlos Guzmán
- CIMMYT, Global Wheat Program, Km 45 Carretera México-Veracruz, El Batán, C.P. 56130, Texcoco, Estado de México, Mexico
| |
Collapse
|