1
|
Changes in water absorption and morphology of rice with different eating quality during soaking. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
The use of amino acids as anti-browning agents in rice parboiling: Effects on quality attributes of three South American genotypes. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Liu X, Xie H, Li J, Wang J, Ding T, Jin G, Song W, Chunfang S. Effects of soaking temperature and ultrasonic power on the cooking time and physical properties of brown rice. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xu Liu
- Key Laboratory of Modern Agricultural Equipment, Ministry of Agriculture and Rural Affairs Nanjing institute of Agricultural Mechanization Ministry of Agriculture and Rural Affairs Nanjing P. R. China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology School of Mechanical Engineering Jiangnan University Wuxi Jiangsu P. R. China
| | - Huihuang Xie
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology School of Mechanical Engineering Jiangnan University Wuxi Jiangsu P. R. China
| | - Jie Li
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology School of Mechanical Engineering Jiangnan University Wuxi Jiangsu P. R. China
| | - Jiaoling Wang
- Key Laboratory of Modern Agricultural Equipment, Ministry of Agriculture and Rural Affairs Nanjing institute of Agricultural Mechanization Ministry of Agriculture and Rural Affairs Nanjing P. R. China
| | - Tianhang Ding
- Key Laboratory of Modern Agricultural Equipment, Ministry of Agriculture and Rural Affairs Nanjing institute of Agricultural Mechanization Ministry of Agriculture and Rural Affairs Nanjing P. R. China
| | - Guangyuan Jin
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology School of Mechanical Engineering Jiangnan University Wuxi Jiangsu P. R. China
| | - Weidong Song
- Key Laboratory of Modern Agricultural Equipment, Ministry of Agriculture and Rural Affairs Nanjing institute of Agricultural Mechanization Ministry of Agriculture and Rural Affairs Nanjing P. R. China
| | - Song Chunfang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology School of Mechanical Engineering Jiangnan University Wuxi Jiangsu P. R. China
| |
Collapse
|
4
|
Li H, Xu M, Yao X, Wen Y, Lu S, Wang J, Sun B. The promoted hydrolysis effect of cellulase with ultrasound treatment is reflected on the sonicated rather than native brown rice. ULTRASONICS SONOCHEMISTRY 2022; 83:105920. [PMID: 35077963 PMCID: PMC8789687 DOI: 10.1016/j.ultsonch.2022.105920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 05/21/2023]
Abstract
Brown rice is nutritionally superior to polished white rice, as it maintains a large content of external bran that involves a series of bioactive compounds. However, the presence of bran also restricts water diffusion and results in adverse quality of brown rice. In this work, ultrasound conditions were optimized for cellulase to improve its hydrolysis effect on rice bran, and combinations of enzymatic and ultrasound treatment in different manners were conducted on brown rice, to improve the textural attributes. The results showed significant improvements in the catalytic activity and efficiency of cellulase after ultrasonication at the optimal intensity of 1.67 W cm-3 and duration of 30 min, with the conformational variation of cellulase observed from the fluorescence spectra and circular dichroism (CD). Despite the enhanced activity of ultrasonicated cellulase, it leaded to a similar rice surface morphology and a comparable amount of released glucose, and equivalent textural parameters of brown rice treated by native cellulase. However, for the pre-sonicated brown rice, the ultrasonicated cellulase showed a significantly higher hydrolysis capacity than the untreated enzyme, suggesting the important influence of ruptured bran surface on amplifying the hydrolysis effect of cellulase. Compared to the successive ultrasound stimulation on both cellulase and brown rice, ultrasound-assisted cellulase treatment on brown rice produced less glucose from rice bran, but induced similar textural properties of brown rice, possibly resulting from the simultaneously promoting effect of ultrasonication on cellulase and water diffusion. Ultimately, this study highlighted that the mild rice surface rupture is a crucial factor to display the promoted hydrolysis effect of ultrasonicated cellulase on brown rice. Ultrasound-assisted cellulase treatment potentially provides an effective strategy to improve the edible quality of brown rice.
Collapse
Affiliation(s)
- Hongyan Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Minghao Xu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Xu Yao
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Yangyang Wen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Shiyi Lu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China.
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| |
Collapse
|
7
|
Understanding the mechanism of change in morphological structures, visualization features, and physicochemical characteristics of adlay seeds (Coix lacryma-jobi L.): The role of heat soaking. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2019.102892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Zhu L, Cheng L, Zhang H, Wang L, Qian H, Qi X, Wu G. Research on migration path and structuring role of water in rice grain during soaking. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Xu X, Yan W, Yang Z, Wang X, Xiao Y, Du X. Effect of ultra-high pressure on quality characteristics of parboiled rice. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Zhu L, Wu G, Cheng L, Zhang H, Wang L, Qian H, Qi X. Effect of soaking and cooking on structure formation of cooked rice through thermal properties, dynamic viscoelasticity, and enzyme activity. Food Chem 2019; 289:616-624. [PMID: 30955656 DOI: 10.1016/j.foodchem.2019.03.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/17/2019] [Accepted: 03/17/2019] [Indexed: 11/15/2022]
Abstract
The quality of cooked rice and its influence factors have always been the focus of researches. However, the formative mechanisms of its eating quality and structural changes of rice during cooking have seldom been evaluated. In this study, sectional real-time cooking was performed by differential scanning calorimetry (DSC) and dynamic viscoelasticity analysis to monitor the phase transitions and mechanical changes of kernels, which exhibited different characteristics in different stages. Both glass transition and pasting behavior were captured, and showed more viscoelasticity of cooked rice at higher soaking temperatures. Meanwhile, the enzyme activity of rice during soaking was successfully measured by a rapid viscosity analyzer (RVA). Along with the differences of morphologies and crystalline structure at different soaking conditions, the findings of DSC and rheometer were further verified. This study provides effective methods to evaluate changes in rice during cooking and explains the mechanism of differences formed by the soaking temperature.
Collapse
Affiliation(s)
- Ling Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Lilin Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China.
| | - Li Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Xiguang Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Patindol J, Domingues W, Wang YJ. Impact of Soaking Temperature and Duration on Fissure Incidence of Rough Rice Kernels. Cereal Chem 2017. [DOI: 10.1094/cchem-03-17-0053-n] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- James Patindol
- Department of Food Science, University of Arkansas, 2650 N. Young Avenue, Fayetteville, AR 72704, U.S.A
| | - Wallison Domingues
- Department of Food Science, University of Arkansas, 2650 N. Young Avenue, Fayetteville, AR 72704, U.S.A
| | - Ya-Jane Wang
- Department of Food Science, University of Arkansas, 2650 N. Young Avenue, Fayetteville, AR 72704, U.S.A
| |
Collapse
|