1
|
Li L, Liu Y, Ippolito JA, Xing W, Zuo Q, Wang F. Fermentation affects heavy metal bioaccessibility in Chinese mantou. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59013-59026. [PMID: 37000393 DOI: 10.1007/s11356-023-26727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/26/2023] [Indexed: 05/10/2023]
Abstract
Effect of different fermentation methods on heavy metal bioaccessibilities in wheat flour is undetermined. In this work, gastric and gastrointestinal heavy metal bioaccessibility in wheat flour products (control-wheat dough, T1-mantou made with normally fermented dough, T2-mantou made with over-fermented dough and T3-mantou made with over-fermented dough + Na2CO3) made from two wheat flour samples (NX and QD) was assessed via a modified physiologically-based extraction test. Cadmium, Zn and Mn bioaccessibility in the gastric phase (GP) was greater than in the gastrointestinal phase (GIP), yet the opposite was observed for Cu (p < 0.05). Lead bioaccessibility in the GIP of the QD sample was 1.37-4.08 times greater than that in the GP, while only the control had greater bioaccessibility in the GIP than that in the GP (p < 0.05) for the NX sample. Treatments T2 and T3 had greater Cd, Cu, Zn and Mn bioaccessibilities than the control and T1 in the GP (p < 0.05). In the GIP, however, only T3 had greater Mn bioaccessibility than the control for the NX sample. Enhanced degradation of the heavy metal-phytate following over-fermentation may have led to greater heavy metal bioaccessibility. Results should help food processors reduce human absorption of excessive heavy metals present in wheat flour foods.
Collapse
Affiliation(s)
- Liping Li
- School of the Environment, Henan University of Technology, Zhengzhou, 450001, Henan, China.
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China.
| | - Yanqing Liu
- School of the Environment, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China
| | - James A Ippolito
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523-1170, USA
| | - Weiqin Xing
- School of the Environment, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China
| | - Qian Zuo
- School of the Environment, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| |
Collapse
|
2
|
WANG F, CHAO H, XU Z, WU Y, SUN L, WANG N. Bran characteristics impact the whole wheat noodle quality. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.29322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Feng WANG
- Anhui Agricultural University, China
| | | | - Zhihan XU
- Anhui Agricultural University, China
| | - Yi WU
- Anhui Agricultural University, China
| | | | | |
Collapse
|
3
|
Li Z, Zhou M, Cui M, Wang Y, Li H. Improvement of whole wheat dough fermentation for steamed bread making using selected phytate-degrading Wickerhamomyces anomalus P4. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Alkandari S, Bhatti ME, Aldughpassi A, Al-Hassawi F, Al-Foudari M, Sidhu JS. Development of functional foods using psyllium husk and wheat bran fractions: Phytic acid contents. Saudi J Biol Sci 2021; 28:3602-3606. [PMID: 34121903 PMCID: PMC8175994 DOI: 10.1016/j.sjbs.2021.03.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 11/19/2022] Open
Abstract
Wheat grain is a rich source of phosphorus which is present mostly as phytic acid and is distributed mainly in the bran and germ fractions. Phytic acid has now been recognized as an important phytochemical having antioxidant properties. This study deals with the determination of total as well as phytic phosphorus contents of psyllium (PS), course (CB) and fine wheat bran (FB) enriched pan bread and Arabic flat bread. The concentration of phytic acid in CB, FB, wheat germ, wholegrain wheat flour (WGF), white wheat flour (WWF), and psyllium were found to be 8.86 mg/g, 8.52 mg/g, 6.05 mg/g, 1.74 mg/g, 0.46 mg/g and 0.02 mg/g, respectively. Most of the phosphorus existed as phytic phosphorus (74.7–90.8%) in FB, CB, germ, and WGF as compared to only 42.6% in WWF. The level of phytic phosphorus in pan bread containing 10% CB, 20% FB (both containing with 5% PS) was found to be 0.63 mg/g and 1.53 mg/g respectively, as compared to only 0.34 mg/g in WWF pan bread, and 0.90 mg/g in WGF pan bread. The phytic phosphorus content in Arabic bread made with WGF and 3% psyllium was 1.32 mg/g as compared to only 0.48 mg/g in WWF Arabic flat bread. The results obtained indicate that the level of phytic phosphorus significantly increased in bread formulations containing CB, FB, and WGF, but no change with psyllium addition was observed. Adding these wheat mill fractions, and psyllium will enable bakeries not only to produce fiber-enriched pan bread and Arabic bread but would also benefit consumers to increase their dietary fiber intakes, and health-promoting phytochemicals coming from wheat bran and germ fractions.
Collapse
Affiliation(s)
- Sharifa Alkandari
- Dept.of Food Science & Nutrition, College of Life Sciences, Kuwait University, P.O. Box. 5969, Safat 13060, Kuwait
| | - Mohammad E. Bhatti
- Kuwait Institute for Scientific Research, Central Analytical Lab, P.O. Box 24885, Safat 13109, Kuwait
| | - Ahmed Aldughpassi
- Dept.of Food Science & Nutrition, College of Life Sciences, Kuwait University, P.O. Box. 5969, Safat 13060, Kuwait
| | - Fatima Al-Hassawi
- Dept.of Food Science & Nutrition, College of Life Sciences, Kuwait University, P.O. Box. 5969, Safat 13060, Kuwait
| | - Mohammad Al-Foudari
- Kuwait Institute for Scientific Research, Central Analytical Lab, P.O. Box 24885, Safat 13109, Kuwait
| | - Jiwan S. Sidhu
- Dept.of Food Science & Nutrition, College of Life Sciences, Kuwait University, P.O. Box. 5969, Safat 13060, Kuwait
- Corresponding author.
| |
Collapse
|
5
|
Wang R, Guo S. Phytic acid and its interactions: Contributions to protein functionality, food processing, and safety. Compr Rev Food Sci Food Saf 2021; 20:2081-2105. [DOI: 10.1111/1541-4337.12714] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/15/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Ruican Wang
- Department of Food Science University of Wisconsin‐Madison Madison Wisconsin USA
| | - Shuntang Guo
- Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science & Nutritional Engineering China Agricultural University Beijing China
| |
Collapse
|
6
|
Jang HS, Lee J, Lee HJ, Park EY. Phytate-mediated phosphorylation of maize, rice, and potato starches at different pH conditions. Int J Biol Macromol 2020; 165:857-864. [DOI: 10.1016/j.ijbiomac.2020.09.245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022]
|
7
|
Gómez M, Gutkoski LC, Bravo‐Núñez Á. Understanding whole‐wheat flour and its effect in breads: A review. Compr Rev Food Sci Food Saf 2020; 19:3241-3265. [DOI: 10.1111/1541-4337.12625] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/11/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Manuel Gómez
- Food Technology Area, College of Agricultural Engineering University of Valladolid Palencia Spain
| | - Luiz C. Gutkoski
- Programa de Pós‐Graduação em Ciência e Tecnologia de Alimentos Universidade de Passo Fundo Passo Fundo RS Brazil
| | - Ángela Bravo‐Núñez
- Food Technology Area, College of Agricultural Engineering University of Valladolid Palencia Spain
| |
Collapse
|
8
|
Phytase treatment of a protein-enriched rice bran fraction improves heat-induced gelation properties at alkaline conditions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Signatures for torque variation in wheat dough structure are affected by enzymatic treatments and heating. Food Chem 2020; 316:126357. [PMID: 32062577 DOI: 10.1016/j.foodchem.2020.126357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/25/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
Molecular interactions in dough are poorly defined but affect final product usage. By monitoring changes in torque as dough is formed, we identified 80-85 °C as a gateway stage determining dough collapse during the mixing/heating process. We propose that this phenomenon is a diagnostic signature linked to integral features of dough complexes formed by some wheat varieties but not others. We found the dough at 80-85 °C was stabilized by increasing the starting bowl temperature (before a standard linear increase in temperature) of the mixing process and demonstrated the significance of specific macromolecular interactions that are formed early in the mixing process. Enzymes including papain, alpha-amylase, glucose oxidase and phytase stabilized dough structure to facilitate transition through the gateway temperatures between 80 and 85 °C. Our results show that if the dough initially formed a protein-starch complex that was too large, instability and collapse of the structure can occur later.
Collapse
|
10
|
Wheat bran-associated subaleurone and endosperm proteins and their impact on bran-rich bread-making. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Park EY, Fuerst EP, Baik BK. Effects of Bran Prehydration on Functional Characteristics and Bread-Baking Quality of Bran and Flour Blends. Cereal Chem 2017. [DOI: 10.1094/cchem-03-17-0049-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Eun Young Park
- School of Food Science, Washington State University, Pullman, WA 99164-6420, U.S.A.; currently, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - E. Patrick Fuerst
- Department of Crop and Soil Sciences, Western Wheat Quality Laboratory, Washington State University, Pullman, WA 99164-6420, U.S.A
| | - Byung-Kee Baik
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS)-CSWQRU, Wooster, OH 44691, U.S.A
| |
Collapse
|