1
|
Shah U, Bhattarai R, Al-Salami H, Blanchard C, Johnson SK. Advances in Extraction, Structure, and Physiochemical Properties of Sorghum Kafirin for Biomaterial Applications: A Review. J Funct Biomater 2024; 15:172. [PMID: 39057294 PMCID: PMC11278494 DOI: 10.3390/jfb15070172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 07/28/2024] Open
Abstract
Kafirin is an endosperm-specific hydrophobic protein found in sorghum grain and the waste by-product from sorghum biorefineries known as sorghum dried distillers' grain with solubles (DDGS). Because of kafirin's poor nutritional profile (negative nitrogen balance, slow digestibility, and lack of some essential amino acids), its direct human use as a food is restricted. Nevertheless, increased focus on biofuel production from sorghum grain has triggered a new wave of research to use sorghum DDGS kafirin as a food-grade protein for biomaterials with diverse applications. These applications result from kafirin's unique chemical nature: high hydrophobicity, evaporation-induced self-assembling capacity, elongated conformation, water insolubility, and low digestibility. Aqueous alcohol mixtures have been widely used for the extraction of kafirin. The composition, structure, extraction methodologies, and physiochemical properties of kafirin, emphasising its biomaterial functionality, are discussed in detail in this review. The literature survey reveals an in-depth understanding of extraction methodologies and their impact on structure functionality, which could assist in formulating materials of kafirin at a commercial scale. Ongoing research continues to explore the potential of kafirin and optimise its utilisation as a functional biomaterial, highlighting its valuable structural and physicochemical properties. Further studies should focus on covering gaps in the research as some of the current structural understanding comes from data on zein protein from maize.
Collapse
Affiliation(s)
- Umar Shah
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA 6845, Australia; (U.S.)
| | - Rewati Bhattarai
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA 6845, Australia; (U.S.)
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia
| | - Christopher Blanchard
- ARC ITTC for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Stuart K. Johnson
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA 6845, Australia; (U.S.)
| |
Collapse
|
2
|
Gell G, Karsai I, Berki Z, Horváth Á, Florides CG, Birinyi Z, Nagy-Réder D, Varga B, Cseh A, Békés F, Veisz O. Effect of additional water supply during grain filling on protein composition and epitope characteristics of winter oats. Curr Res Food Sci 2022; 5:2146-2161. [DOI: 10.1016/j.crfs.2022.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/12/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
|
3
|
El-Mahis A, Baky MH, Farag MA. How Does Rye Compare to other Cereals? A Comprehensive Review of its Potential Nutritional Value and Better Opportunities for its Processing as a Food-Based Cereal. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2023817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Amira El-Mahis
- Applied Research Center of Medicinal Plants, National Organization of Drug Control and Research, Egypt
| | - Mostafa H. Baky
- Pharmacognosy Department, College of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Egypt
- Chemistry Department, School of Sciences & Engineering, the American University in Cairo, Egypt
| |
Collapse
|
4
|
Kaur P, Singh Sandhu K, Singh Purewal S, Kaur M, Kumar Singh S. Rye: A wonder crop with industrially important macromolecules and health benefits. Food Res Int 2021; 150:110769. [PMID: 34865784 DOI: 10.1016/j.foodres.2021.110769] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/16/2021] [Accepted: 10/18/2021] [Indexed: 01/21/2023]
Abstract
Rye (Secale cereale) is a rich source of macromolecules, especially starch, fiber, and proteins which encourages the researchers and industries to use it for various purposes including bakery products, beverages and edible films formulation. However, despite many nutritional and health benefiting properties, rye has not been explored up to its full potential. Interest of consumers in formulating foods with high fiber and phenolic compounds has generated our interest in compiling the detailed information on rye. The present review on rye grains summarizes the existing scientific data on rye macronutrients (starch, arabinoxylan, β-glucan, fructan and proteins) and their corresponding industrial importance. Detailed description in this review unfolds the potential of rye grains for human nutrition. This review provides comprehensive knowledge and fills the remaining gap between the previous and latest scientific findings. Comprehensive information on rye nutrients along with health benefits will help to open a new era for scientific world and industrial sectors.
Collapse
Affiliation(s)
- Pinderpal Kaur
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Kawaljit Singh Sandhu
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India.
| | - Sukhvinder Singh Purewal
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Maninder Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, India
| | | |
Collapse
|
5
|
Bharathi R, Dai Y, Tyl C, Schoenfuss T, Annor G. The effect of tempering on protein properties and arabinoxylan contents of intermediate wheatgrass (
Thinopyrum intermedium
) flour. Cereal Chem 2021. [DOI: 10.1002/cche.10505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Radhika Bharathi
- Department of Food Science and Nutrition University of Minnesota Saint Paul Minnesota USA
| | - Yaxi Dai
- Department of Food Science and Technology University of Georgia Athens Georgia USA
| | - Catrin Tyl
- Department of Food Science and Technology University of Georgia Athens Georgia USA
| | - Tonya Schoenfuss
- Department of Food Science and Nutrition University of Minnesota Saint Paul Minnesota USA
| | - George Amponsah Annor
- Department of Food Science and Nutrition University of Minnesota Saint Paul Minnesota USA
| |
Collapse
|
6
|
Németh R, Tömösközi S. Rye: Current state and future trends in research and applications. ACTA ALIMENTARIA 2021. [DOI: 10.1556/066.2021.00162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
After wheat, rye is the second most important raw material for bread and bakery products, and it is one of the most excellent sources of dietary fibres and bioactive compounds. Besides, rye is utilised in more and more other food products as well, such as breakfast cereals, porridges, pasta, snack products, etc. Interestingly, its production is decreasing worldwide, probably because of the expansion of other cereals (e.g. triticale), but also the effect of climate change can also play a role therein. However, there is no doubt that scientific research aimed at studying the possible health benefits and the potential of rye in the development of novel food products has intensified over the past decade.
The aim of our paper is to make a comprehensive review of the latest results on the compositional and technological properties of rye that fundamentally influence its utilisation for food purposes. Furthermore, this review aims to identify the current development directions and trends of rye products.
Collapse
Affiliation(s)
- R. Németh
- Research Group of Cereal Science and Food Quality, Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111, Budapest, Hungary
| | - S. Tömösközi
- Research Group of Cereal Science and Food Quality, Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111, Budapest, Hungary
| |
Collapse
|
7
|
Silventoinen P, Kortekangas A, Ercili-Cura D, Nordlund E. Impact of ultra-fine milling and air classification on biochemical and techno-functional characteristics of wheat and rye bran. Food Res Int 2021; 139:109971. [PMID: 33509517 DOI: 10.1016/j.foodres.2020.109971] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/17/2020] [Accepted: 11/28/2020] [Indexed: 10/22/2022]
Abstract
Dry milling and air classification were applied to produce three different ingredients from wheat and rye brans. Dried and pin disc-milled brans having particle size medians of 89-131 µm were air classified to produce protein- and soluble dietary fibre-enriched hybrid ingredients (median particle size 7-9 µm) and additionally brans were ultra-finely milled (median particle size 17-19 µm). The samples were characterised in regard to their composition and techno-functional properties. In air classification, protein content increased from 16.4 and 14.7% to 30.9 and 30.7% for wheat and rye brans, which corresponded to protein separation efficiencies of 18.0 and 26.9%, respectively. Concurrently, the ratio between soluble and insoluble dietary fibre increased from 0.22 to 0.85 for wheat and from 0.56 to 1.75 for rye bran. The protein- and soluble dietary fibre-enriched wheat bran fraction showed improved protein solubility at alkaline pH when compared to pin disc- and ultra-finely-milled wheat bran, whereas less difference between the wheat ingredients was observed at native and acidic pH. The protein- and soluble dietary fibre-enriched rye bran fraction exhibited lower solubility than the pin disc- or ultra-finely-milled rye brans at all the studied pH-values. Ultra-fine milling alone decreased protein solubility and increased damaged starch content when compared to the pin disc-milled brans. Both protein enrichment and ultra-fine milling improved colloidal stability in comparison to the pin disc-milled raw materials. The lowest water and oil binding capacities were obtained for the protein-enriched fractions. Ultrasound-assisted emulsification of the protein- and soluble dietary fibre-enriched fractions and the ultra-finely-milled brans revealed no major differences in the visual quality or stability of the emulsions. The results suggest that modification of the techno-functional properties of cereal brans may be acquired via both air classification and ultra-fine milling.
Collapse
Affiliation(s)
- Pia Silventoinen
- VTT Technical Research Centre of Finland, Ltd., P.O. Box 1000, FI-02044 VTT, Finland.
| | - Anni Kortekangas
- VTT Technical Research Centre of Finland, Ltd., P.O. Box 1000, FI-02044 VTT, Finland.
| | - Dilek Ercili-Cura
- VTT Technical Research Centre of Finland, Ltd., P.O. Box 1000, FI-02044 VTT, Finland.
| | - Emilia Nordlund
- VTT Technical Research Centre of Finland, Ltd., P.O. Box 1000, FI-02044 VTT, Finland.
| |
Collapse
|
8
|
Deleu LJ, Lemmens E, Redant L, Delcour JA. The major constituents of rye (
Secale cereale
L.) flour and their role in the production of rye bread, a food product to which a multitude of health aspects are ascribed. Cereal Chem 2020. [DOI: 10.1002/cche.10306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lomme J. Deleu
- Laboratory of Food Chemistry and Biochemistry KU Leuven Kasteelpark Arenberg 20 Leuven 3001 Belgium
| | - Elien Lemmens
- Laboratory of Food Chemistry and Biochemistry KU Leuven Kasteelpark Arenberg 20 Leuven 3001 Belgium
| | - Lore Redant
- Laboratory of Food Chemistry and Biochemistry KU Leuven Kasteelpark Arenberg 20 Leuven 3001 Belgium
- Aminolabs Groups NV Research Campus 6 Hasselt3500 Belgium
| | - Jan A. Delcour
- Laboratory of Food Chemistry and Biochemistry KU Leuven Kasteelpark Arenberg 20 Leuven 3001 Belgium
| |
Collapse
|
9
|
Linear and Non-linear Rheology of Bread Doughs Made from Blends of Wheat (Triticum aestivum L.) and Rye (Secale cereale L.) Flour. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02393-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Cardoso RV, Fernandes Â, Gonzaléz-Paramás AM, Barros L, Ferreira IC. Flour fortification for nutritional and health improvement: A review. Food Res Int 2019; 125:108576. [DOI: 10.1016/j.foodres.2019.108576] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 12/19/2022]
|
11
|
Prolamins from cereal by-products: Classification, extraction, characterization and its applications in micro- and nanofabrication. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Boostani S, Hosseini SMH, Yousefi G, Riazi M, Tamaddon AM, Van der Meeren P. The stability of triphasic oil-in-water Pickering emulsions can be improved by physical modification of hordein- and secalin-based submicron particles. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Liu R, Yang G, Guo J, Wu T, Sui W, Zhang M. Effects of incorporation of black garlic on rheological, textural and sensory properties of rye ( Secale cereale L.) flour noodles. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2018.1515792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin University of Science & Technology, Tianjin, China
- Engineering Research Center of Food Biotechnology, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - Guang Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Jiamin Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin University of Science & Technology, Tianjin, China
- Engineering Research Center of Food Biotechnology, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| |
Collapse
|